MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg Structured version   Visualization version   GIF version

Theorem frgrwopreg 29330
Description: In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((♯‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((♯‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreg (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵

Proof of Theorem frgrwopreg
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . 3 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . 3 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 29319 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
6 hashv01gt1 14255 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
7 hasheq0 14273 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
8 biidd 261 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = 1))
9 biidd 261 . . . . . 6 (𝐴 ∈ V → (1 < (♯‘𝐴) ↔ 1 < (♯‘𝐴)))
107, 8, 93orbi123d 1435 . . . . 5 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) ↔ (𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴))))
11 hashv01gt1 14255 . . . . . . 7 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
12 hasheq0 14273 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
13 biidd 261 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ (♯‘𝐵) = 1))
14 biidd 261 . . . . . . . . 9 (𝐵 ∈ V → (1 < (♯‘𝐵) ↔ 1 < (♯‘𝐵)))
1512, 13, 143orbi123d 1435 . . . . . . . 8 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) ↔ (𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))))
16 olc 866 . . . . . . . . . . 11 (𝐵 = ∅ → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
1716olcd 872 . . . . . . . . . 10 (𝐵 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
18172a1d 26 . . . . . . . . 9 (𝐵 = ∅ → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
19 orc 865 . . . . . . . . . . 11 ((♯‘𝐵) = 1 → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
2019olcd 872 . . . . . . . . . 10 ((♯‘𝐵) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
21202a1d 26 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
22 olc 866 . . . . . . . . . . . . 13 (𝐴 = ∅ → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2322orcd 871 . . . . . . . . . . . 12 (𝐴 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
24232a1d 26 . . . . . . . . . . 11 (𝐴 = ∅ → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
25 orc 865 . . . . . . . . . . . . 13 ((♯‘𝐴) = 1 → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2625orcd 871 . . . . . . . . . . . 12 ((♯‘𝐴) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
27262a1d 26 . . . . . . . . . . 11 ((♯‘𝐴) = 1 → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
28 eqid 2731 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
291, 2, 3, 4, 28frgrwopreglem5 29328 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))))
30 frgrusgr 29268 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
31 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝐺 ∈ USGraph)
32 elrabi 3642 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑎𝑉)
3332, 3eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎𝐴𝑎𝑉)
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑎𝑉)
3534ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑉)
36 rabidim1 3426 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑥𝑉)
3736, 3eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴𝑥𝑉)
3837adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑥𝑉)
3938ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑥𝑉)
40 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑥)
41 eldifi 4091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝑉𝐴) → 𝑏𝑉)
4241, 4eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐵𝑏𝑉)
4342adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑏𝑉)
4443ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑉)
45 eldifi 4091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑉𝐴) → 𝑦𝑉)
4645, 4eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵𝑦𝑉)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑦𝑉)
4847ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑦𝑉)
49 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑦)
501, 284cyclusnfrgr 29299 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑥𝑉𝑎𝑥) ∧ (𝑏𝑉𝑦𝑉𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5131, 35, 39, 40, 44, 48, 49, 50syl133anc 1393 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5251exp4b 431 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝑎𝑥𝑏𝑦) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺)) → 𝐺 ∉ FriendGraph ))))
53523impd 1348 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
54 df-nel 3046 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
55 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5654, 55sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∉ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5753, 56syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5857rexlimdvva 3201 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5958rexlimdvva 3201 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6059com23 86 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6130, 60mpcom 38 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
62613ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
6329, 62mpd 15 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
64633exp 1119 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6564com3l 89 . . . . . . . . . . 11 (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6624, 27, 653jaoi 1427 . . . . . . . . . 10 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6766com12 32 . . . . . . . . 9 (1 < (♯‘𝐵) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6818, 21, 673jaoi 1427 . . . . . . . 8 ((𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6915, 68syl6bi 252 . . . . . . 7 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
7011, 69mpd 15 . . . . . 6 (𝐵 ∈ V → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7170com12 32 . . . . 5 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7210, 71syl6bi 252 . . . 4 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
736, 72mpd 15 . . 3 (𝐴 ∈ V → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7473imp 407 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
755, 74ax-mp 5 1 (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wnel 3045  wrex 3069  {crab 3405  Vcvv 3446  cdif 3910  c0 4287  {cpr 4593   class class class wbr 5110  cfv 6501  0cc0 11060  1c1 11061   < clt 11198  chash 14240  Vtxcvtx 28010  Edgcedg 28061  USGraphcusgr 28163  VtxDegcvtxdg 28476   FriendGraph cfrgr 29265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-xadd 13043  df-fz 13435  df-hash 14241  df-edg 28062  df-uhgr 28072  df-ushgr 28073  df-upgr 28096  df-umgr 28097  df-uspgr 28164  df-usgr 28165  df-nbgr 28344  df-vtxdg 28477  df-frgr 29266
This theorem is referenced by:  frgrregorufr0  29331
  Copyright terms: Public domain W3C validator