MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg Structured version   Visualization version   GIF version

Theorem frgrwopreg 28096
Description: In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((♯‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((♯‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreg (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵

Proof of Theorem frgrwopreg
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . 3 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . 3 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 28085 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
6 hashv01gt1 13699 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
7 hasheq0 13718 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
8 biidd 264 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = 1))
9 biidd 264 . . . . . 6 (𝐴 ∈ V → (1 < (♯‘𝐴) ↔ 1 < (♯‘𝐴)))
107, 8, 93orbi123d 1431 . . . . 5 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) ↔ (𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴))))
11 hashv01gt1 13699 . . . . . . 7 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
12 hasheq0 13718 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
13 biidd 264 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ (♯‘𝐵) = 1))
14 biidd 264 . . . . . . . . 9 (𝐵 ∈ V → (1 < (♯‘𝐵) ↔ 1 < (♯‘𝐵)))
1512, 13, 143orbi123d 1431 . . . . . . . 8 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) ↔ (𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))))
16 olc 864 . . . . . . . . . . 11 (𝐵 = ∅ → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
1716olcd 870 . . . . . . . . . 10 (𝐵 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
18172a1d 26 . . . . . . . . 9 (𝐵 = ∅ → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
19 orc 863 . . . . . . . . . . 11 ((♯‘𝐵) = 1 → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
2019olcd 870 . . . . . . . . . 10 ((♯‘𝐵) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
21202a1d 26 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
22 olc 864 . . . . . . . . . . . . 13 (𝐴 = ∅ → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2322orcd 869 . . . . . . . . . . . 12 (𝐴 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
24232a1d 26 . . . . . . . . . . 11 (𝐴 = ∅ → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
25 orc 863 . . . . . . . . . . . . 13 ((♯‘𝐴) = 1 → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2625orcd 869 . . . . . . . . . . . 12 ((♯‘𝐴) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
27262a1d 26 . . . . . . . . . . 11 ((♯‘𝐴) = 1 → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
28 eqid 2821 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
291, 2, 3, 4, 28frgrwopreglem5 28094 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))))
30 frgrusgr 28034 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
31 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝐺 ∈ USGraph)
32 elrabi 3674 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑎𝑉)
3332, 3eleq2s 2931 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎𝐴𝑎𝑉)
3433adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑎𝑉)
3534ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑉)
36 rabidim1 3380 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑥𝑉)
3736, 3eleq2s 2931 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴𝑥𝑉)
3837adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑥𝑉)
3938ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑥𝑉)
40 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑥)
41 eldifi 4102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝑉𝐴) → 𝑏𝑉)
4241, 4eleq2s 2931 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐵𝑏𝑉)
4342adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑏𝑉)
4443ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑉)
45 eldifi 4102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑉𝐴) → 𝑦𝑉)
4645, 4eleq2s 2931 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵𝑦𝑉)
4746adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑦𝑉)
4847ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑦𝑉)
49 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑦)
501, 284cyclusnfrgr 28065 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑥𝑉𝑎𝑥) ∧ (𝑏𝑉𝑦𝑉𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5131, 35, 39, 40, 44, 48, 49, 50syl133anc 1389 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5251exp4b 433 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝑎𝑥𝑏𝑦) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺)) → 𝐺 ∉ FriendGraph ))))
53523impd 1344 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
54 df-nel 3124 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
55 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5654, 55sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∉ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5753, 56syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5857rexlimdvva 3294 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5958rexlimdvva 3294 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6059com23 86 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6130, 60mpcom 38 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
62613ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
6329, 62mpd 15 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
64633exp 1115 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6564com3l 89 . . . . . . . . . . 11 (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6624, 27, 653jaoi 1423 . . . . . . . . . 10 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6766com12 32 . . . . . . . . 9 (1 < (♯‘𝐵) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6818, 21, 673jaoi 1423 . . . . . . . 8 ((𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6915, 68syl6bi 255 . . . . . . 7 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
7011, 69mpd 15 . . . . . 6 (𝐵 ∈ V → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7170com12 32 . . . . 5 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7210, 71syl6bi 255 . . . 4 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
736, 72mpd 15 . . 3 (𝐴 ∈ V → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7473imp 409 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
755, 74ax-mp 5 1 (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wnel 3123  wrex 3139  {crab 3142  Vcvv 3494  cdif 3932  c0 4290  {cpr 4562   class class class wbr 5058  cfv 6349  0cc0 10531  1c1 10532   < clt 10669  chash 13684  Vtxcvtx 26775  Edgcedg 26826  USGraphcusgr 26928  VtxDegcvtxdg 27241   FriendGraph cfrgr 28031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-xadd 12502  df-fz 12887  df-hash 13685  df-edg 26827  df-uhgr 26837  df-ushgr 26838  df-upgr 26861  df-umgr 26862  df-uspgr 26929  df-usgr 26930  df-nbgr 27109  df-vtxdg 27242  df-frgr 28032
This theorem is referenced by:  frgrregorufr0  28097
  Copyright terms: Public domain W3C validator