MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg Structured version   Visualization version   GIF version

Theorem frgrwopreg 28108
Description: In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((♯‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((♯‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreg (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵

Proof of Theorem frgrwopreg
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . 3 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . 3 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 28097 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
6 hashv01gt1 13701 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
7 hasheq0 13720 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
8 biidd 265 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = 1))
9 biidd 265 . . . . . 6 (𝐴 ∈ V → (1 < (♯‘𝐴) ↔ 1 < (♯‘𝐴)))
107, 8, 93orbi123d 1432 . . . . 5 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) ↔ (𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴))))
11 hashv01gt1 13701 . . . . . . 7 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
12 hasheq0 13720 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
13 biidd 265 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ (♯‘𝐵) = 1))
14 biidd 265 . . . . . . . . 9 (𝐵 ∈ V → (1 < (♯‘𝐵) ↔ 1 < (♯‘𝐵)))
1512, 13, 143orbi123d 1432 . . . . . . . 8 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) ↔ (𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))))
16 olc 865 . . . . . . . . . . 11 (𝐵 = ∅ → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
1716olcd 871 . . . . . . . . . 10 (𝐵 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
18172a1d 26 . . . . . . . . 9 (𝐵 = ∅ → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
19 orc 864 . . . . . . . . . . 11 ((♯‘𝐵) = 1 → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
2019olcd 871 . . . . . . . . . 10 ((♯‘𝐵) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
21202a1d 26 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
22 olc 865 . . . . . . . . . . . . 13 (𝐴 = ∅ → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2322orcd 870 . . . . . . . . . . . 12 (𝐴 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
24232a1d 26 . . . . . . . . . . 11 (𝐴 = ∅ → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
25 orc 864 . . . . . . . . . . . . 13 ((♯‘𝐴) = 1 → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2625orcd 870 . . . . . . . . . . . 12 ((♯‘𝐴) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
27262a1d 26 . . . . . . . . . . 11 ((♯‘𝐴) = 1 → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
28 eqid 2798 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
291, 2, 3, 4, 28frgrwopreglem5 28106 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))))
30 frgrusgr 28046 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
31 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝐺 ∈ USGraph)
32 elrabi 3623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑎𝑉)
3332, 3eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎𝐴𝑎𝑉)
3433adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑎𝑉)
3534ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑉)
36 rabidim1 3333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑥𝑉)
3736, 3eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴𝑥𝑉)
3837adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑥𝑉)
3938ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑥𝑉)
40 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑥)
41 eldifi 4054 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝑉𝐴) → 𝑏𝑉)
4241, 4eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐵𝑏𝑉)
4342adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑏𝑉)
4443ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑉)
45 eldifi 4054 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑉𝐴) → 𝑦𝑉)
4645, 4eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵𝑦𝑉)
4746adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑦𝑉)
4847ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑦𝑉)
49 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑦)
501, 284cyclusnfrgr 28077 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑥𝑉𝑎𝑥) ∧ (𝑏𝑉𝑦𝑉𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5131, 35, 39, 40, 44, 48, 49, 50syl133anc 1390 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5251exp4b 434 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝑎𝑥𝑏𝑦) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺)) → 𝐺 ∉ FriendGraph ))))
53523impd 1345 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
54 df-nel 3092 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
55 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5654, 55sylbi 220 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∉ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5753, 56syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5857rexlimdvva 3253 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5958rexlimdvva 3253 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6059com23 86 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6130, 60mpcom 38 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
62613ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
6329, 62mpd 15 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
64633exp 1116 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6564com3l 89 . . . . . . . . . . 11 (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6624, 27, 653jaoi 1424 . . . . . . . . . 10 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6766com12 32 . . . . . . . . 9 (1 < (♯‘𝐵) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6818, 21, 673jaoi 1424 . . . . . . . 8 ((𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6915, 68syl6bi 256 . . . . . . 7 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
7011, 69mpd 15 . . . . . 6 (𝐵 ∈ V → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7170com12 32 . . . . 5 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7210, 71syl6bi 256 . . . 4 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
736, 72mpd 15 . . 3 (𝐴 ∈ V → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7473imp 410 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
755, 74ax-mp 5 1 (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wnel 3091  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  c0 4243  {cpr 4527   class class class wbr 5030  cfv 6324  0cc0 10526  1c1 10527   < clt 10664  chash 13686  Vtxcvtx 26789  Edgcedg 26840  USGraphcusgr 26942  VtxDegcvtxdg 27255   FriendGraph cfrgr 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-nbgr 27123  df-vtxdg 27256  df-frgr 28044
This theorem is referenced by:  frgrregorufr0  28109
  Copyright terms: Public domain W3C validator