MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg Structured version   Visualization version   GIF version

Theorem frgrwopreg 30302
Description: In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((♯‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((♯‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreg (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵

Proof of Theorem frgrwopreg
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . 3 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . 3 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 30291 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
6 hashv01gt1 14286 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
7 hasheq0 14304 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
8 biidd 262 . . . . . 6 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = 1))
9 biidd 262 . . . . . 6 (𝐴 ∈ V → (1 < (♯‘𝐴) ↔ 1 < (♯‘𝐴)))
107, 8, 93orbi123d 1437 . . . . 5 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) ↔ (𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴))))
11 hashv01gt1 14286 . . . . . . 7 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
12 hasheq0 14304 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
13 biidd 262 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ (♯‘𝐵) = 1))
14 biidd 262 . . . . . . . . 9 (𝐵 ∈ V → (1 < (♯‘𝐵) ↔ 1 < (♯‘𝐵)))
1512, 13, 143orbi123d 1437 . . . . . . . 8 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) ↔ (𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))))
16 olc 868 . . . . . . . . . . 11 (𝐵 = ∅ → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
1716olcd 874 . . . . . . . . . 10 (𝐵 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
18172a1d 26 . . . . . . . . 9 (𝐵 = ∅ → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
19 orc 867 . . . . . . . . . . 11 ((♯‘𝐵) = 1 → ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))
2019olcd 874 . . . . . . . . . 10 ((♯‘𝐵) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
21202a1d 26 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
22 olc 868 . . . . . . . . . . . . 13 (𝐴 = ∅ → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2322orcd 873 . . . . . . . . . . . 12 (𝐴 = ∅ → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
24232a1d 26 . . . . . . . . . . 11 (𝐴 = ∅ → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
25 orc 867 . . . . . . . . . . . . 13 ((♯‘𝐴) = 1 → ((♯‘𝐴) = 1 ∨ 𝐴 = ∅))
2625orcd 873 . . . . . . . . . . . 12 ((♯‘𝐴) = 1 → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
27262a1d 26 . . . . . . . . . . 11 ((♯‘𝐴) = 1 → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
28 eqid 2729 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
291, 2, 3, 4, 28frgrwopreglem5 30300 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))))
30 frgrusgr 30240 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
31 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝐺 ∈ USGraph)
32 elrabi 3651 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑎𝑉)
3332, 3eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎𝐴𝑎𝑉)
3433adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑎𝑉)
3534ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑉)
36 rabidim1 3425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑥𝑉)
3736, 3eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴𝑥𝑉)
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑥𝑉)
3938ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑥𝑉)
40 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑥)
41 eldifi 4090 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝑉𝐴) → 𝑏𝑉)
4241, 4eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐵𝑏𝑉)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑏𝑉)
4443ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑉)
45 eldifi 4090 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑉𝐴) → 𝑦𝑉)
4645, 4eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵𝑦𝑉)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑦𝑉)
4847ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑦𝑉)
49 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑦)
501, 284cyclusnfrgr 30271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑥𝑉𝑎𝑥) ∧ (𝑏𝑉𝑦𝑉𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5131, 35, 39, 40, 44, 48, 49, 50syl133anc 1395 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5251exp4b 430 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝑎𝑥𝑏𝑦) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺)) → 𝐺 ∉ FriendGraph ))))
53523impd 1349 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
54 df-nel 3030 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
55 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5654, 55sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∉ FriendGraph → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
5753, 56syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5857rexlimdvva 3192 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5958rexlimdvva 3192 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6059com23 86 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6130, 60mpcom 38 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
62613ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
6329, 62mpd 15 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
64633exp 1119 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6564com3l 89 . . . . . . . . . . 11 (1 < (♯‘𝐴) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6624, 27, 653jaoi 1430 . . . . . . . . . 10 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (1 < (♯‘𝐵) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6766com12 32 . . . . . . . . 9 (1 < (♯‘𝐵) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6818, 21, 673jaoi 1430 . . . . . . . 8 ((𝐵 = ∅ ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6915, 68biimtrdi 253 . . . . . . 7 (𝐵 ∈ V → (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
7011, 69mpd 15 . . . . . 6 (𝐵 ∈ V → ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7170com12 32 . . . . 5 ((𝐴 = ∅ ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7210, 71biimtrdi 253 . . . 4 (𝐴 ∈ V → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))))
736, 72mpd 15 . . 3 (𝐴 ∈ V → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7473imp 406 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))))
755, 74ax-mp 5 1 (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  c0 4292  {cpr 4587   class class class wbr 5102  cfv 6499  0cc0 11044  1c1 11045   < clt 11184  chash 14271  Vtxcvtx 28976  Edgcedg 29027  USGraphcusgr 29129  VtxDegcvtxdg 29446   FriendGraph cfrgr 30237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-xadd 13049  df-fz 13445  df-hash 14272  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-nbgr 29313  df-vtxdg 29447  df-frgr 30238
This theorem is referenced by:  frgrregorufr0  30303
  Copyright terms: Public domain W3C validator