MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupr Structured version   Visualization version   GIF version

Theorem grupr 10680
Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupr ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)

Proof of Theorem grupr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10675 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
21ibi 267 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
32simprd 495 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
4 preq2 4685 . . . . . . . . . 10 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
54eleq1d 2814 . . . . . . . . 9 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝑥, 𝐵} ∈ 𝑈))
65rspccv 3572 . . . . . . . 8 (∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
763ad2ant2 1134 . . . . . . 7 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
87com12 32 . . . . . 6 (𝐵𝑈 → ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → {𝑥, 𝐵} ∈ 𝑈))
98ralimdv 3144 . . . . 5 (𝐵𝑈 → (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
103, 9syl5com 31 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
11 preq1 4684 . . . . . 6 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1211eleq1d 2814 . . . . 5 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈))
1312rspccv 3572 . . . 4 (∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈))
1410, 13syl6 35 . . 3 (𝑈 ∈ Univ → (𝐵𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
1514com23 86 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐵𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
16153imp 1110 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  𝒫 cpw 4548  {cpr 4576   cuni 4857  Tr wtr 5196  ran crn 5615  (class class class)co 7341  m cmap 8745  Univcgru 10673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-tr 5197  df-iota 6433  df-fv 6485  df-ov 7344  df-gru 10674
This theorem is referenced by:  grusn  10687  gruop  10688  gruun  10689  gruwun  10696  intgru  10697
  Copyright terms: Public domain W3C validator