MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupr Structured version   Visualization version   GIF version

Theorem grupr 10792
Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupr ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)

Proof of Theorem grupr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10787 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
21ibi 267 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
32simprd 497 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
4 preq2 4739 . . . . . . . . . 10 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
54eleq1d 2819 . . . . . . . . 9 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝑥, 𝐵} ∈ 𝑈))
65rspccv 3610 . . . . . . . 8 (∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
763ad2ant2 1135 . . . . . . 7 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
87com12 32 . . . . . 6 (𝐵𝑈 → ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → {𝑥, 𝐵} ∈ 𝑈))
98ralimdv 3170 . . . . 5 (𝐵𝑈 → (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
103, 9syl5com 31 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
11 preq1 4738 . . . . . 6 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1211eleq1d 2819 . . . . 5 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈))
1312rspccv 3610 . . . 4 (∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈))
1410, 13syl6 35 . . 3 (𝑈 ∈ Univ → (𝐵𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
1514com23 86 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐵𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
16153imp 1112 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  𝒫 cpw 4603  {cpr 4631   cuni 4909  Tr wtr 5266  ran crn 5678  (class class class)co 7409  m cmap 8820  Univcgru 10785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-tr 5267  df-iota 6496  df-fv 6552  df-ov 7412  df-gru 10786
This theorem is referenced by:  grusn  10799  gruop  10800  gruun  10801  gruwun  10808  intgru  10809
  Copyright terms: Public domain W3C validator