MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupr Structured version   Visualization version   GIF version

Theorem grupr 10213
Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupr ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)

Proof of Theorem grupr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10208 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
21ibi 269 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
32simprd 498 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
4 preq2 4663 . . . . . . . . . 10 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
54eleq1d 2897 . . . . . . . . 9 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝑥, 𝐵} ∈ 𝑈))
65rspccv 3619 . . . . . . . 8 (∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
763ad2ant2 1130 . . . . . . 7 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
87com12 32 . . . . . 6 (𝐵𝑈 → ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → {𝑥, 𝐵} ∈ 𝑈))
98ralimdv 3178 . . . . 5 (𝐵𝑈 → (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
103, 9syl5com 31 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
11 preq1 4662 . . . . . 6 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1211eleq1d 2897 . . . . 5 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈))
1312rspccv 3619 . . . 4 (∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈))
1410, 13syl6 35 . . 3 (𝑈 ∈ Univ → (𝐵𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
1514com23 86 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐵𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
16153imp 1107 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  𝒫 cpw 4538  {cpr 4562   cuni 4831  Tr wtr 5164  ran crn 5550  (class class class)co 7150  m cmap 8400  Univcgru 10206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-tr 5165  df-iota 6308  df-fv 6357  df-ov 7153  df-gru 10207
This theorem is referenced by:  grusn  10220  gruop  10221  gruun  10222  gruwun  10229  intgru  10230
  Copyright terms: Public domain W3C validator