MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupr Structured version   Visualization version   GIF version

Theorem grupr 10733
Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupr ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)

Proof of Theorem grupr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10728 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
21ibi 266 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
32simprd 496 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
4 preq2 4695 . . . . . . . . . 10 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
54eleq1d 2822 . . . . . . . . 9 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝑥, 𝐵} ∈ 𝑈))
65rspccv 3578 . . . . . . . 8 (∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
763ad2ant2 1134 . . . . . . 7 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐵𝑈 → {𝑥, 𝐵} ∈ 𝑈))
87com12 32 . . . . . 6 (𝐵𝑈 → ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → {𝑥, 𝐵} ∈ 𝑈))
98ralimdv 3166 . . . . 5 (𝐵𝑈 → (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
103, 9syl5com 31 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → ∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈))
11 preq1 4694 . . . . . 6 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1211eleq1d 2822 . . . . 5 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈))
1312rspccv 3578 . . . 4 (∀𝑥𝑈 {𝑥, 𝐵} ∈ 𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈))
1410, 13syl6 35 . . 3 (𝑈 ∈ Univ → (𝐵𝑈 → (𝐴𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
1514com23 86 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐵𝑈 → {𝐴, 𝐵} ∈ 𝑈)))
16153imp 1111 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  𝒫 cpw 4560  {cpr 4588   cuni 4865  Tr wtr 5222  ran crn 5634  (class class class)co 7357  m cmap 8765  Univcgru 10726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-tr 5223  df-iota 6448  df-fv 6504  df-ov 7360  df-gru 10727
This theorem is referenced by:  grusn  10740  gruop  10741  gruun  10742  gruwun  10749  intgru  10750
  Copyright terms: Public domain W3C validator