Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grusucd Structured version   Visualization version   GIF version

Theorem grusucd 41808
Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Hypotheses
Ref Expression
grusucd.1 (𝜑𝐺 ∈ Univ)
grusucd.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grusucd (𝜑 → suc 𝐴𝐺)

Proof of Theorem grusucd
StepHypRef Expression
1 df-suc 6267 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 grusucd.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grusucd.2 . . 3 (𝜑𝐴𝐺)
4 grusn 10549 . . . 4 ((𝐺 ∈ Univ ∧ 𝐴𝐺) → {𝐴} ∈ 𝐺)
52, 3, 4syl2anc 584 . . 3 (𝜑 → {𝐴} ∈ 𝐺)
6 gruun 10551 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ {𝐴} ∈ 𝐺) → (𝐴 ∪ {𝐴}) ∈ 𝐺)
72, 3, 5, 6syl3anc 1370 . 2 (𝜑 → (𝐴 ∪ {𝐴}) ∈ 𝐺)
81, 7eqeltrid 2843 1 (𝜑 → suc 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cun 3886  {csn 4563  suc csuc 6263  Univcgru 10535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-sbc 3718  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-fv 6436  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8606  df-gru 10536
This theorem is referenced by:  gruscottcld  41827
  Copyright terms: Public domain W3C validator