Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grusucd Structured version   Visualization version   GIF version

Theorem grusucd 44221
Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Hypotheses
Ref Expression
grusucd.1 (𝜑𝐺 ∈ Univ)
grusucd.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grusucd (𝜑 → suc 𝐴𝐺)

Proof of Theorem grusucd
StepHypRef Expression
1 df-suc 6363 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 grusucd.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grusucd.2 . . 3 (𝜑𝐴𝐺)
4 grusn 10823 . . . 4 ((𝐺 ∈ Univ ∧ 𝐴𝐺) → {𝐴} ∈ 𝐺)
52, 3, 4syl2anc 584 . . 3 (𝜑 → {𝐴} ∈ 𝐺)
6 gruun 10825 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ {𝐴} ∈ 𝐺) → (𝐴 ∪ {𝐴}) ∈ 𝐺)
72, 3, 5, 6syl3anc 1373 . 2 (𝜑 → (𝐴 ∪ {𝐴}) ∈ 𝐺)
81, 7eqeltrid 2839 1 (𝜑 → suc 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cun 3929  {csn 4606  suc csuc 6359  Univcgru 10809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-gru 10810
This theorem is referenced by:  gruscottcld  44240
  Copyright terms: Public domain W3C validator