Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grusucd Structured version   Visualization version   GIF version

Theorem grusucd 44262
Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Hypotheses
Ref Expression
grusucd.1 (𝜑𝐺 ∈ Univ)
grusucd.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grusucd (𝜑 → suc 𝐴𝐺)

Proof of Theorem grusucd
StepHypRef Expression
1 df-suc 6312 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 grusucd.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grusucd.2 . . 3 (𝜑𝐴𝐺)
4 grusn 10692 . . . 4 ((𝐺 ∈ Univ ∧ 𝐴𝐺) → {𝐴} ∈ 𝐺)
52, 3, 4syl2anc 584 . . 3 (𝜑 → {𝐴} ∈ 𝐺)
6 gruun 10694 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ {𝐴} ∈ 𝐺) → (𝐴 ∪ {𝐴}) ∈ 𝐺)
72, 3, 5, 6syl3anc 1373 . 2 (𝜑 → (𝐴 ∪ {𝐴}) ∈ 𝐺)
81, 7eqeltrid 2835 1 (𝜑 → suc 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cun 3900  {csn 4576  suc csuc 6308  Univcgru 10678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-gru 10679
This theorem is referenced by:  gruscottcld  44281
  Copyright terms: Public domain W3C validator