Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grusucd Structured version   Visualization version   GIF version

Theorem grusucd 44226
Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Hypotheses
Ref Expression
grusucd.1 (𝜑𝐺 ∈ Univ)
grusucd.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grusucd (𝜑 → suc 𝐴𝐺)

Proof of Theorem grusucd
StepHypRef Expression
1 df-suc 6341 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 grusucd.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grusucd.2 . . 3 (𝜑𝐴𝐺)
4 grusn 10764 . . . 4 ((𝐺 ∈ Univ ∧ 𝐴𝐺) → {𝐴} ∈ 𝐺)
52, 3, 4syl2anc 584 . . 3 (𝜑 → {𝐴} ∈ 𝐺)
6 gruun 10766 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ {𝐴} ∈ 𝐺) → (𝐴 ∪ {𝐴}) ∈ 𝐺)
72, 3, 5, 6syl3anc 1373 . 2 (𝜑 → (𝐴 ∪ {𝐴}) ∈ 𝐺)
81, 7eqeltrid 2833 1 (𝜑 → suc 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cun 3915  {csn 4592  suc csuc 6337  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-gru 10751
This theorem is referenced by:  gruscottcld  44245
  Copyright terms: Public domain W3C validator