| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 5815 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 I cid 5532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: dmi 5885 resieq 5961 iss 6006 elidinxp 6015 restidsing 6024 imai 6045 intasym 6088 asymref 6089 intirr 6091 poirr2 6097 cnvi 6114 xpdifid 6141 coi1 6235 dfpo2 6269 dffun2 6521 dffun2OLD 6522 dffv2 6956 isof1oidb 7299 idssen 8968 dflt2 13108 relexpindlem 15029 opsrtoslem2 21963 hausdiag 23532 hauseqlcld 23533 metustid 24442 ltgov 28524 ex-id 30363 dfso2 35742 idsset 35878 dfon3 35880 elfix 35891 dffix2 35893 sscoid 35901 dffun10 35902 elfuns 35903 brsingle 35905 brapply 35926 brsuccf 35929 dfrdg4 35939 bj-imdiridlem 37173 iss2 38326 undmrnresiss 43593 dffrege99 43951 ipo0 44438 ifr0 44439 fourierdlem42 46147 |
| Copyright terms: Public domain | W3C validator |