MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5853
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5852 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  Vcvv 3475   class class class wbr 5149   I cid 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684
This theorem is referenced by:  dmi  5922  resieq  5993  iss  6036  elidinxp  6044  restidsing  6053  imai  6074  intasym  6117  asymref  6118  intirr  6120  poirr2  6126  cnvi  6142  xpdifid  6168  coi1  6262  dfpo2  6296  dffun2  6554  dffun2OLD  6555  dffv2  6987  isof1oidb  7321  idssen  8993  dflt2  13127  relexpindlem  15010  opsrtoslem2  21617  hausdiag  23149  hauseqlcld  23150  metustid  24063  ltgov  27848  ex-id  29687  dfso2  34725  idsset  34862  dfon3  34864  elfix  34875  dffix2  34877  sscoid  34885  dffun10  34886  elfuns  34887  brsingle  34889  brapply  34910  brsuccf  34913  dfrdg4  34923  bj-imdiridlem  36066  iss2  37213  undmrnresiss  42355  dffrege99  42713  ipo0  43208  ifr0  43209  fourierdlem42  44865
  Copyright terms: Public domain W3C validator