Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
ideq.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | ideqg 5757 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 I cid 5487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 |
This theorem is referenced by: dmi 5827 resieq 5899 iss 5940 elidinxp 5948 restidsing 5959 imai 5979 intasym 6017 asymref 6018 intirr 6020 poirr2 6026 cnvi 6042 xpdifid 6068 coi1 6163 dfpo2 6196 dffv2 6857 isof1oidb 7188 idssen 8756 dflt2 12864 relexpindlem 14755 opsrtoslem2 21244 hausdiag 22777 hauseqlcld 22778 metustid 23691 ltgov 26939 ex-id 28777 dfso2 33701 idsset 34171 dfon3 34173 elfix 34184 dffix2 34186 sscoid 34194 dffun10 34195 elfuns 34196 brsingle 34198 brapply 34219 brsuccf 34222 dfrdg4 34232 bj-imdiridlem 35335 iss2 36458 undmrnresiss 41165 dffrege99 41523 ipo0 42020 ifr0 42021 fourierdlem42 43644 |
Copyright terms: Public domain | W3C validator |