| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 5791 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 I cid 5510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: dmi 5861 resieq 5939 iss 5984 elidinxp 5993 restidsing 6002 imai 6023 intasym 6062 asymref 6063 intirr 6065 poirr2 6071 cnvi 6088 xpdifid 6115 coi1 6210 dfpo2 6243 dffun2 6491 dffv2 6917 isof1oidb 7258 idssen 8919 dflt2 13044 relexpindlem 14967 ex-chn1 18540 opsrtoslem2 21989 hausdiag 23558 hauseqlcld 23559 metustid 24467 ltgov 28573 ex-id 30409 dfso2 35787 idsset 35923 dfon3 35925 elfix 35936 dffix2 35938 sscoid 35946 dffun10 35947 elfuns 35948 brsingle 35950 brapply 35971 brsuccf 35974 dfrdg4 35984 bj-imdiridlem 37218 iss2 38371 undmrnresiss 43636 dffrege99 43994 ipo0 44480 ifr0 44481 fourierdlem42 46186 |
| Copyright terms: Public domain | W3C validator |