MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5792
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5791 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5091   I cid 5510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623
This theorem is referenced by:  dmi  5861  resieq  5939  iss  5984  elidinxp  5993  restidsing  6002  imai  6023  intasym  6062  asymref  6063  intirr  6065  poirr2  6071  cnvi  6088  xpdifid  6115  coi1  6210  dfpo2  6243  dffun2  6491  dffv2  6917  isof1oidb  7258  idssen  8919  dflt2  13044  relexpindlem  14967  ex-chn1  18540  opsrtoslem2  21989  hausdiag  23558  hauseqlcld  23559  metustid  24467  ltgov  28573  ex-id  30409  dfso2  35787  idsset  35923  dfon3  35925  elfix  35936  dffix2  35938  sscoid  35946  dffun10  35947  elfuns  35948  brsingle  35950  brapply  35971  brsuccf  35974  dfrdg4  35984  bj-imdiridlem  37218  iss2  38371  undmrnresiss  43636  dffrege99  43994  ipo0  44480  ifr0  44481  fourierdlem42  46186
  Copyright terms: Public domain W3C validator