Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
ideq.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | ideqg 5760 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 I cid 5488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 |
This theorem is referenced by: dmi 5830 resieq 5902 iss 5943 elidinxp 5951 restidsing 5962 imai 5982 intasym 6020 asymref 6021 intirr 6023 poirr2 6029 cnvi 6045 xpdifid 6071 coi1 6166 dfpo2 6199 dffun2 6443 dffv2 6863 isof1oidb 7195 idssen 8785 dflt2 12882 relexpindlem 14774 opsrtoslem2 21263 hausdiag 22796 hauseqlcld 22797 metustid 23710 ltgov 26958 ex-id 28798 dfso2 33722 idsset 34192 dfon3 34194 elfix 34205 dffix2 34207 sscoid 34215 dffun10 34216 elfuns 34217 brsingle 34219 brapply 34240 brsuccf 34243 dfrdg4 34253 bj-imdiridlem 35356 iss2 36479 undmrnresiss 41212 dffrege99 41570 ipo0 42067 ifr0 42068 fourierdlem42 43690 |
Copyright terms: Public domain | W3C validator |