MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5796
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5795 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5093   I cid 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626
This theorem is referenced by:  dmi  5865  resieq  5943  iss  5988  elidinxp  5997  restidsing  6006  imai  6027  intasym  6066  asymref  6067  intirr  6069  poirr2  6075  cnvi  6093  xpdifid  6120  coi1  6215  dfpo2  6248  dffun2  6496  dffv2  6923  isof1oidb  7264  idssen  8926  dflt2  13049  relexpindlem  14972  ex-chn1  18545  opsrtoslem2  21992  hausdiag  23561  hauseqlcld  23562  metustid  24470  ltgov  28576  ex-id  30416  dfso2  35820  idsset  35953  dfon3  35955  elfix  35966  dffix2  35968  sscoid  35976  dffun10  35977  elfuns  35978  brsingle  35980  brapply  36001  lemsuccf  36004  dfrdg4  36016  bj-imdiridlem  37250  iss2  38396  undmrnresiss  43721  dffrege99  44079  ipo0  44565  ifr0  44566  fourierdlem42  46271
  Copyright terms: Public domain W3C validator