MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5761
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5760 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074   I cid 5488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596
This theorem is referenced by:  dmi  5830  resieq  5902  iss  5943  elidinxp  5951  restidsing  5962  imai  5982  intasym  6020  asymref  6021  intirr  6023  poirr2  6029  cnvi  6045  xpdifid  6071  coi1  6166  dfpo2  6199  dffun2  6443  dffv2  6863  isof1oidb  7195  idssen  8785  dflt2  12882  relexpindlem  14774  opsrtoslem2  21263  hausdiag  22796  hauseqlcld  22797  metustid  23710  ltgov  26958  ex-id  28798  dfso2  33722  idsset  34192  dfon3  34194  elfix  34205  dffix2  34207  sscoid  34215  dffun10  34216  elfuns  34217  brsingle  34219  brapply  34240  brsuccf  34243  dfrdg4  34253  bj-imdiridlem  35356  iss2  36479  undmrnresiss  41212  dffrege99  41570  ipo0  42067  ifr0  42068  fourierdlem42  43690
  Copyright terms: Public domain W3C validator