| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 5818 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 I cid 5535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: dmi 5888 resieq 5964 iss 6009 elidinxp 6018 restidsing 6027 imai 6048 intasym 6091 asymref 6092 intirr 6094 poirr2 6100 cnvi 6117 xpdifid 6144 coi1 6238 dfpo2 6272 dffun2 6524 dffun2OLD 6525 dffv2 6959 isof1oidb 7302 idssen 8971 dflt2 13115 relexpindlem 15036 opsrtoslem2 21970 hausdiag 23539 hauseqlcld 23540 metustid 24449 ltgov 28531 ex-id 30370 dfso2 35749 idsset 35885 dfon3 35887 elfix 35898 dffix2 35900 sscoid 35908 dffun10 35909 elfuns 35910 brsingle 35912 brapply 35933 brsuccf 35936 dfrdg4 35946 bj-imdiridlem 37180 iss2 38333 undmrnresiss 43600 dffrege99 43958 ipo0 44445 ifr0 44446 fourierdlem42 46154 |
| Copyright terms: Public domain | W3C validator |