| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 5795 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 I cid 5513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: dmi 5865 resieq 5943 iss 5988 elidinxp 5997 restidsing 6006 imai 6027 intasym 6066 asymref 6067 intirr 6069 poirr2 6075 cnvi 6093 xpdifid 6120 coi1 6215 dfpo2 6248 dffun2 6496 dffv2 6923 isof1oidb 7264 idssen 8926 dflt2 13049 relexpindlem 14972 ex-chn1 18545 opsrtoslem2 21992 hausdiag 23561 hauseqlcld 23562 metustid 24470 ltgov 28576 ex-id 30416 dfso2 35820 idsset 35953 dfon3 35955 elfix 35966 dffix2 35968 sscoid 35976 dffun10 35977 elfuns 35978 brsingle 35980 brapply 36001 lemsuccf 36004 dfrdg4 36016 bj-imdiridlem 37250 iss2 38396 undmrnresiss 43721 dffrege99 44079 ipo0 44565 ifr0 44566 fourierdlem42 46271 |
| Copyright terms: Public domain | W3C validator |