MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5850
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5849 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5147   I cid 5572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682
This theorem is referenced by:  dmi  5919  resieq  5990  iss  6033  elidinxp  6041  restidsing  6050  imai  6070  intasym  6113  asymref  6114  intirr  6116  poirr2  6122  cnvi  6138  xpdifid  6164  coi1  6258  dfpo2  6292  dffun2  6550  dffun2OLD  6551  dffv2  6983  isof1oidb  7317  idssen  8989  dflt2  13123  relexpindlem  15006  opsrtoslem2  21608  hausdiag  23140  hauseqlcld  23141  metustid  24054  ltgov  27837  ex-id  29676  dfso2  34713  idsset  34850  dfon3  34852  elfix  34863  dffix2  34865  sscoid  34873  dffun10  34874  elfuns  34875  brsingle  34877  brapply  34898  brsuccf  34901  dfrdg4  34911  bj-imdiridlem  36054  iss2  37201  undmrnresiss  42340  dffrege99  42698  ipo0  43193  ifr0  43194  fourierdlem42  44851
  Copyright terms: Public domain W3C validator