MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5750
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5749 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070   I cid 5479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by:  dmi  5819  resieq  5891  iss  5932  elidinxp  5940  restidsing  5951  imai  5971  intasym  6009  asymref  6010  intirr  6012  poirr2  6018  cnvi  6034  xpdifid  6060  coi1  6155  dfpo2  6188  dffv2  6845  isof1oidb  7175  idssen  8740  dflt2  12811  relexpindlem  14702  opsrtoslem2  21173  hausdiag  22704  hauseqlcld  22705  metustid  23616  ltgov  26862  ex-id  28699  dfso2  33628  idsset  34119  dfon3  34121  elfix  34132  dffix2  34134  sscoid  34142  dffun10  34143  elfuns  34144  brsingle  34146  brapply  34167  brsuccf  34170  dfrdg4  34180  bj-imdiridlem  35283  iss2  36406  undmrnresiss  41101  dffrege99  41459  ipo0  41956  ifr0  41957  fourierdlem42  43580
  Copyright terms: Public domain W3C validator