![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
ideq.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | ideqg 5876 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 I cid 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 |
This theorem is referenced by: dmi 5946 resieq 6020 iss 6064 elidinxp 6073 restidsing 6082 imai 6103 intasym 6147 asymref 6148 intirr 6150 poirr2 6156 cnvi 6173 xpdifid 6199 coi1 6293 dfpo2 6327 dffun2 6583 dffun2OLD 6584 dffv2 7017 isof1oidb 7360 idssen 9057 dflt2 13210 relexpindlem 15112 opsrtoslem2 22103 hausdiag 23674 hauseqlcld 23675 metustid 24588 ltgov 28623 ex-id 30466 dfso2 35717 idsset 35854 dfon3 35856 elfix 35867 dffix2 35869 sscoid 35877 dffun10 35878 elfuns 35879 brsingle 35881 brapply 35902 brsuccf 35905 dfrdg4 35915 bj-imdiridlem 37151 iss2 38300 undmrnresiss 43566 dffrege99 43924 ipo0 44418 ifr0 44419 fourierdlem42 46070 |
Copyright terms: Public domain | W3C validator |