| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 5798 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 I cid 5517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: dmi 5868 resieq 5945 iss 5990 elidinxp 5999 restidsing 6008 imai 6029 intasym 6068 asymref 6069 intirr 6071 poirr2 6077 cnvi 6094 xpdifid 6121 coi1 6215 dfpo2 6248 dffun2 6496 dffv2 6922 isof1oidb 7265 idssen 8929 dflt2 13068 relexpindlem 14988 opsrtoslem2 21979 hausdiag 23548 hauseqlcld 23549 metustid 24458 ltgov 28560 ex-id 30396 dfso2 35727 idsset 35863 dfon3 35865 elfix 35876 dffix2 35878 sscoid 35886 dffun10 35887 elfuns 35888 brsingle 35890 brapply 35911 brsuccf 35914 dfrdg4 35924 bj-imdiridlem 37158 iss2 38311 undmrnresiss 43577 dffrege99 43935 ipo0 44422 ifr0 44423 fourierdlem42 46131 |
| Copyright terms: Public domain | W3C validator |