MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Structured version   Visualization version   GIF version

Theorem ideq 5877
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 5876 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 5 1 (𝐴 I 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166   I cid 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707
This theorem is referenced by:  dmi  5946  resieq  6020  iss  6064  elidinxp  6073  restidsing  6082  imai  6103  intasym  6147  asymref  6148  intirr  6150  poirr2  6156  cnvi  6173  xpdifid  6199  coi1  6293  dfpo2  6327  dffun2  6583  dffun2OLD  6584  dffv2  7017  isof1oidb  7360  idssen  9057  dflt2  13210  relexpindlem  15112  opsrtoslem2  22103  hausdiag  23674  hauseqlcld  23675  metustid  24588  ltgov  28623  ex-id  30466  dfso2  35717  idsset  35854  dfon3  35856  elfix  35867  dffix2  35869  sscoid  35877  dffun10  35878  elfuns  35879  brsingle  35881  brapply  35902  brsuccf  35905  dfrdg4  35915  bj-imdiridlem  37151  iss2  38300  undmrnresiss  43566  dffrege99  43924  ipo0  44418  ifr0  44419  fourierdlem42  46070
  Copyright terms: Public domain W3C validator