| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 5836 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 I cid 5552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: dmi 5906 resieq 5982 iss 6027 elidinxp 6036 restidsing 6045 imai 6066 intasym 6109 asymref 6110 intirr 6112 poirr2 6118 cnvi 6135 xpdifid 6162 coi1 6256 dfpo2 6290 dffun2 6546 dffun2OLD 6547 dffv2 6979 isof1oidb 7322 idssen 9016 dflt2 13169 relexpindlem 15087 opsrtoslem2 22019 hausdiag 23588 hauseqlcld 23589 metustid 24498 ltgov 28581 ex-id 30420 dfso2 35777 idsset 35913 dfon3 35915 elfix 35926 dffix2 35928 sscoid 35936 dffun10 35937 elfuns 35938 brsingle 35940 brapply 35961 brsuccf 35964 dfrdg4 35974 bj-imdiridlem 37208 iss2 38367 undmrnresiss 43595 dffrege99 43953 ipo0 44440 ifr0 44441 fourierdlem42 46145 |
| Copyright terms: Public domain | W3C validator |