Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ideq | Structured version Visualization version GIF version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
ideq.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | ideqg 5749 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 I cid 5479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 |
This theorem is referenced by: dmi 5819 resieq 5891 iss 5932 elidinxp 5940 restidsing 5951 imai 5971 intasym 6009 asymref 6010 intirr 6012 poirr2 6018 cnvi 6034 xpdifid 6060 coi1 6155 dfpo2 6188 dffv2 6845 isof1oidb 7175 idssen 8740 dflt2 12811 relexpindlem 14702 opsrtoslem2 21173 hausdiag 22704 hauseqlcld 22705 metustid 23616 ltgov 26862 ex-id 28699 dfso2 33628 idsset 34119 dfon3 34121 elfix 34132 dffix2 34134 sscoid 34142 dffun10 34143 elfuns 34144 brsingle 34146 brapply 34167 brsuccf 34170 dfrdg4 34180 bj-imdiridlem 35283 iss2 36406 undmrnresiss 41101 dffrege99 41459 ipo0 41956 ifr0 41957 fourierdlem42 43580 |
Copyright terms: Public domain | W3C validator |