| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version | ||
| Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6518 | . 2 ⊢ Fun I | |
| 2 | ididg 5800 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 3 | funbrfv 6875 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 I cid 5517 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fviss 6904 fvmpti 6933 fvmpt2 6945 fvresi 7113 seqom0g 8385 fodomfi 9219 fodomfiOLD 9239 seqfeq4 13976 fac1 14202 facp1 14203 bcval5 14243 bcn2 14244 ids1 14522 s1val 14523 climshft2 15507 sum2id 15633 sumss 15649 prod2id 15853 fprodfac 15898 strfvi 17119 grpinvfvi 18879 mulgfvi 18970 efgrcl 19612 efgval 19614 frgp0 19657 frgpmhm 19662 vrgpf 19665 vrgpinv 19666 frgpupf 19670 frgpup1 19672 frgpup2 19673 frgpup3lem 19674 frgpnabllem1 19770 frgpnabllem2 19771 rlmsca2 21121 ply1basfvi 22141 ply1plusgfvi 22142 psr1sca2 22151 ply1sca2 22154 ply1scl0OLD 22193 ply1scl1OLD 22196 indislem 22903 2ndcctbss 23358 1stcelcls 23364 txindislem 23536 iscau3 25194 iscmet3 25209 ovolctb 25407 itg2splitlem 25665 deg1fvi 26006 deg1invg 26027 dgrle 26164 logfac 26526 fnpreimac 32628 ptpconn 35208 dicvscacl 41173 elinlem 43574 brfvid 43663 fvilbd 43665 nregmodelf1o 44992 cjnpoly 46877 tposid 48873 tposidres 48874 |
| Copyright terms: Public domain | W3C validator |