![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version |
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6600 | . 2 ⊢ Fun I | |
2 | ididg 5867 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
3 | funbrfv 6958 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 I cid 5582 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: fviss 6986 fvmpti 7015 fvmpt2 7027 fvresi 7193 seqom0g 8495 fodomfi 9348 fodomfiOLD 9368 seqfeq4 14089 fac1 14313 facp1 14314 bcval5 14354 bcn2 14355 ids1 14632 s1val 14633 climshft2 15615 sum2id 15741 sumss 15757 prod2id 15961 fprodfac 16006 strfvi 17224 grpinvfvi 19013 mulgfvi 19104 efgrcl 19748 efgval 19750 frgp0 19793 frgpmhm 19798 vrgpf 19801 vrgpinv 19802 frgpupf 19806 frgpup1 19808 frgpup2 19809 frgpup3lem 19810 frgpnabllem1 19906 frgpnabllem2 19907 rlmsca2 21224 ply1basfvi 22258 ply1plusgfvi 22259 psr1sca2 22268 ply1sca2 22271 ply1scl0OLD 22310 ply1scl1OLD 22313 indislem 23023 2ndcctbss 23479 1stcelcls 23485 txindislem 23657 iscau3 25326 iscmet3 25341 ovolctb 25539 itg2splitlem 25798 deg1fvi 26139 deg1invg 26160 dgrle 26297 logfac 26658 fnpreimac 32688 ptpconn 35218 dicvscacl 41174 elinlem 43588 brfvid 43677 fvilbd 43679 |
Copyright terms: Public domain | W3C validator |