Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version |
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6450 | . 2 ⊢ Fun I | |
2 | ididg 5751 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
3 | funbrfv 6802 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 I cid 5479 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fviss 6827 fvmpti 6856 fvmpt2 6868 fvresi 7027 seqom0g 8257 fodomfi 9022 seqfeq4 13700 fac1 13919 facp1 13920 bcval5 13960 bcn2 13961 ids1 14230 s1val 14231 climshft2 15219 sum2id 15348 sumss 15364 prod2id 15566 fprodfac 15611 strfvi 16819 grpinvfvi 18537 mulgfvi 18621 efgrcl 19236 efgval 19238 frgp0 19281 frgpmhm 19286 vrgpf 19289 vrgpinv 19290 frgpupf 19294 frgpup1 19296 frgpup2 19297 frgpup3lem 19298 frgpnabllem1 19389 frgpnabllem2 19390 rlmsca2 20384 ply1basfvi 21322 ply1plusgfvi 21323 psr1sca2 21332 ply1sca2 21335 ply1scl0 21371 ply1scl1 21373 indislem 22058 2ndcctbss 22514 1stcelcls 22520 txindislem 22692 iscau3 24347 iscmet3 24362 ovolctb 24559 itg2splitlem 24818 deg1fvi 25155 deg1invg 25176 dgrle 25309 logfac 25661 fnpreimac 30910 ptpconn 33095 dicvscacl 39132 elinlem 41095 brfvid 41184 fvilbd 41186 |
Copyright terms: Public domain | W3C validator |