| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version | ||
| Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6520 | . 2 ⊢ Fun I | |
| 2 | ididg 5799 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 3 | funbrfv 6878 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 I cid 5515 Fun wfun 6482 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 |
| This theorem is referenced by: fviss 6907 fvmpti 6936 fvmpt2 6948 fvresi 7115 seqom0g 8383 fodomfi 9205 fodomfiOLD 9223 seqfeq4 13962 fac1 14188 facp1 14189 bcval5 14229 bcn2 14230 ids1 14509 s1val 14510 climshft2 15493 sum2id 15619 sumss 15635 prod2id 15839 fprodfac 15884 strfvi 17105 grpinvfvi 18899 mulgfvi 18990 efgrcl 19631 efgval 19633 frgp0 19676 frgpmhm 19681 vrgpf 19684 vrgpinv 19685 frgpupf 19689 frgpup1 19691 frgpup2 19692 frgpup3lem 19693 frgpnabllem1 19789 frgpnabllem2 19790 rlmsca2 21137 ply1basfvi 22156 ply1plusgfvi 22157 psr1sca2 22166 ply1sca2 22169 ply1scl0OLD 22208 ply1scl1OLD 22211 indislem 22918 2ndcctbss 23373 1stcelcls 23379 txindislem 23551 iscau3 25208 iscmet3 25223 ovolctb 25421 itg2splitlem 25679 deg1fvi 26020 deg1invg 26041 dgrle 26178 logfac 26540 fnpreimac 32657 ptpconn 35300 dicvscacl 41313 elinlem 43718 brfvid 43807 fvilbd 43809 nregmodelf1o 45135 cjnpoly 47016 tposid 49012 tposidres 49013 |
| Copyright terms: Public domain | W3C validator |