| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version | ||
| Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6568 | . 2 ⊢ Fun I | |
| 2 | ididg 5833 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 3 | funbrfv 6927 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 I cid 5547 Fun wfun 6525 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: fviss 6956 fvmpti 6985 fvmpt2 6997 fvresi 7165 seqom0g 8470 fodomfi 9322 fodomfiOLD 9342 seqfeq4 14069 fac1 14295 facp1 14296 bcval5 14336 bcn2 14337 ids1 14615 s1val 14616 climshft2 15598 sum2id 15724 sumss 15740 prod2id 15944 fprodfac 15989 strfvi 17209 grpinvfvi 18965 mulgfvi 19056 efgrcl 19696 efgval 19698 frgp0 19741 frgpmhm 19746 vrgpf 19749 vrgpinv 19750 frgpupf 19754 frgpup1 19756 frgpup2 19757 frgpup3lem 19758 frgpnabllem1 19854 frgpnabllem2 19855 rlmsca2 21157 ply1basfvi 22176 ply1plusgfvi 22177 psr1sca2 22186 ply1sca2 22189 ply1scl0OLD 22228 ply1scl1OLD 22231 indislem 22938 2ndcctbss 23393 1stcelcls 23399 txindislem 23571 iscau3 25230 iscmet3 25245 ovolctb 25443 itg2splitlem 25701 deg1fvi 26042 deg1invg 26063 dgrle 26200 logfac 26562 fnpreimac 32649 ptpconn 35255 dicvscacl 41210 elinlem 43622 brfvid 43711 fvilbd 43713 tposid 48860 tposidres 48861 |
| Copyright terms: Public domain | W3C validator |