Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version |
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6473 | . 2 ⊢ Fun I | |
2 | ididg 5765 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
3 | funbrfv 6829 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 I cid 5489 Fun wfun 6431 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 |
This theorem is referenced by: fviss 6854 fvmpti 6883 fvmpt2 6895 fvresi 7054 seqom0g 8296 fodomfi 9101 seqfeq4 13781 fac1 14000 facp1 14001 bcval5 14041 bcn2 14042 ids1 14311 s1val 14312 climshft2 15300 sum2id 15429 sumss 15445 prod2id 15647 fprodfac 15692 strfvi 16900 grpinvfvi 18631 mulgfvi 18715 efgrcl 19330 efgval 19332 frgp0 19375 frgpmhm 19380 vrgpf 19383 vrgpinv 19384 frgpupf 19388 frgpup1 19390 frgpup2 19391 frgpup3lem 19392 frgpnabllem1 19483 frgpnabllem2 19484 rlmsca2 20480 ply1basfvi 21421 ply1plusgfvi 21422 psr1sca2 21431 ply1sca2 21434 ply1scl0 21470 ply1scl1 21472 indislem 22159 2ndcctbss 22615 1stcelcls 22621 txindislem 22793 iscau3 24451 iscmet3 24466 ovolctb 24663 itg2splitlem 24922 deg1fvi 25259 deg1invg 25280 dgrle 25413 logfac 25765 fnpreimac 31017 ptpconn 33204 dicvscacl 39212 elinlem 41213 brfvid 41302 fvilbd 41304 |
Copyright terms: Public domain | W3C validator |