| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version | ||
| Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6548 | . 2 ⊢ Fun I | |
| 2 | ididg 5817 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 3 | funbrfv 6909 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 I cid 5532 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fviss 6938 fvmpti 6967 fvmpt2 6979 fvresi 7147 seqom0g 8424 fodomfi 9261 fodomfiOLD 9281 seqfeq4 14016 fac1 14242 facp1 14243 bcval5 14283 bcn2 14284 ids1 14562 s1val 14563 climshft2 15548 sum2id 15674 sumss 15690 prod2id 15894 fprodfac 15939 strfvi 17160 grpinvfvi 18914 mulgfvi 19005 efgrcl 19645 efgval 19647 frgp0 19690 frgpmhm 19695 vrgpf 19698 vrgpinv 19699 frgpupf 19703 frgpup1 19705 frgpup2 19706 frgpup3lem 19707 frgpnabllem1 19803 frgpnabllem2 19804 rlmsca2 21106 ply1basfvi 22125 ply1plusgfvi 22126 psr1sca2 22135 ply1sca2 22138 ply1scl0OLD 22177 ply1scl1OLD 22180 indislem 22887 2ndcctbss 23342 1stcelcls 23348 txindislem 23520 iscau3 25178 iscmet3 25193 ovolctb 25391 itg2splitlem 25649 deg1fvi 25990 deg1invg 26011 dgrle 26148 logfac 26510 fnpreimac 32595 ptpconn 35220 dicvscacl 41185 elinlem 43587 brfvid 43676 fvilbd 43678 nregmodelf1o 45005 cjnpoly 46890 tposid 48873 tposidres 48874 |
| Copyright terms: Public domain | W3C validator |