| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version | ||
| Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6513 | . 2 ⊢ Fun I | |
| 2 | ididg 5793 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 3 | funbrfv 6870 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 I cid 5510 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fviss 6899 fvmpti 6928 fvmpt2 6940 fvresi 7107 seqom0g 8375 fodomfi 9196 fodomfiOLD 9214 seqfeq4 13958 fac1 14184 facp1 14185 bcval5 14225 bcn2 14226 ids1 14505 s1val 14506 climshft2 15489 sum2id 15615 sumss 15631 prod2id 15835 fprodfac 15880 strfvi 17101 grpinvfvi 18895 mulgfvi 18986 efgrcl 19628 efgval 19630 frgp0 19673 frgpmhm 19678 vrgpf 19681 vrgpinv 19682 frgpupf 19686 frgpup1 19688 frgpup2 19689 frgpup3lem 19690 frgpnabllem1 19786 frgpnabllem2 19787 rlmsca2 21134 ply1basfvi 22154 ply1plusgfvi 22155 psr1sca2 22164 ply1sca2 22167 ply1scl0OLD 22206 ply1scl1OLD 22209 indislem 22916 2ndcctbss 23371 1stcelcls 23377 txindislem 23549 iscau3 25206 iscmet3 25221 ovolctb 25419 itg2splitlem 25677 deg1fvi 26018 deg1invg 26039 dgrle 26176 logfac 26538 fnpreimac 32651 ptpconn 35275 dicvscacl 41236 elinlem 43637 brfvid 43726 fvilbd 43728 nregmodelf1o 45054 cjnpoly 46926 tposid 48922 tposidres 48923 |
| Copyright terms: Public domain | W3C validator |