![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version |
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6610 | . 2 ⊢ Fun I | |
2 | ididg 5878 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
3 | funbrfv 6971 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 I cid 5592 Fun wfun 6567 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fviss 6999 fvmpti 7028 fvmpt2 7040 fvresi 7207 seqom0g 8512 fodomfi 9378 fodomfiOLD 9398 seqfeq4 14102 fac1 14326 facp1 14327 bcval5 14367 bcn2 14368 ids1 14645 s1val 14646 climshft2 15628 sum2id 15756 sumss 15772 prod2id 15976 fprodfac 16021 strfvi 17237 grpinvfvi 19022 mulgfvi 19113 efgrcl 19757 efgval 19759 frgp0 19802 frgpmhm 19807 vrgpf 19810 vrgpinv 19811 frgpupf 19815 frgpup1 19817 frgpup2 19818 frgpup3lem 19819 frgpnabllem1 19915 frgpnabllem2 19916 rlmsca2 21229 ply1basfvi 22263 ply1plusgfvi 22264 psr1sca2 22273 ply1sca2 22276 ply1scl0OLD 22315 ply1scl1OLD 22318 indislem 23028 2ndcctbss 23484 1stcelcls 23490 txindislem 23662 iscau3 25331 iscmet3 25346 ovolctb 25544 itg2splitlem 25803 deg1fvi 26144 deg1invg 26165 dgrle 26302 logfac 26661 fnpreimac 32689 ptpconn 35201 dicvscacl 41148 elinlem 43560 brfvid 43649 fvilbd 43651 |
Copyright terms: Public domain | W3C validator |