| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version | ||
| Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6551 | . 2 ⊢ Fun I | |
| 2 | ididg 5820 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 3 | funbrfv 6912 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 I cid 5535 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fviss 6941 fvmpti 6970 fvmpt2 6982 fvresi 7150 seqom0g 8427 fodomfi 9268 fodomfiOLD 9288 seqfeq4 14023 fac1 14249 facp1 14250 bcval5 14290 bcn2 14291 ids1 14569 s1val 14570 climshft2 15555 sum2id 15681 sumss 15697 prod2id 15901 fprodfac 15946 strfvi 17167 grpinvfvi 18921 mulgfvi 19012 efgrcl 19652 efgval 19654 frgp0 19697 frgpmhm 19702 vrgpf 19705 vrgpinv 19706 frgpupf 19710 frgpup1 19712 frgpup2 19713 frgpup3lem 19714 frgpnabllem1 19810 frgpnabllem2 19811 rlmsca2 21113 ply1basfvi 22132 ply1plusgfvi 22133 psr1sca2 22142 ply1sca2 22145 ply1scl0OLD 22184 ply1scl1OLD 22187 indislem 22894 2ndcctbss 23349 1stcelcls 23355 txindislem 23527 iscau3 25185 iscmet3 25200 ovolctb 25398 itg2splitlem 25656 deg1fvi 25997 deg1invg 26018 dgrle 26155 logfac 26517 fnpreimac 32602 ptpconn 35227 dicvscacl 41192 elinlem 43594 brfvid 43683 fvilbd 43685 nregmodelf1o 45012 tposid 48877 tposidres 48878 |
| Copyright terms: Public domain | W3C validator |