Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvi | Structured version Visualization version GIF version |
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvi | ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6460 | . 2 ⊢ Fun I | |
2 | ididg 5757 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
3 | funbrfv 6814 | . 2 ⊢ (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴)) | |
4 | 1, 2, 3 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5075 I cid 5485 Fun wfun 6422 ‘cfv 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-id 5486 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-iota 6386 df-fun 6430 df-fv 6436 |
This theorem is referenced by: fviss 6839 fvmpti 6868 fvmpt2 6880 fvresi 7039 seqom0g 8276 fodomfi 9081 seqfeq4 13761 fac1 13980 facp1 13981 bcval5 14021 bcn2 14022 ids1 14291 s1val 14292 climshft2 15280 sum2id 15409 sumss 15425 prod2id 15627 fprodfac 15672 strfvi 16880 grpinvfvi 18611 mulgfvi 18695 efgrcl 19310 efgval 19312 frgp0 19355 frgpmhm 19360 vrgpf 19363 vrgpinv 19364 frgpupf 19368 frgpup1 19370 frgpup2 19371 frgpup3lem 19372 frgpnabllem1 19463 frgpnabllem2 19464 rlmsca2 20460 ply1basfvi 21401 ply1plusgfvi 21402 psr1sca2 21411 ply1sca2 21414 ply1scl0 21450 ply1scl1 21452 indislem 22139 2ndcctbss 22595 1stcelcls 22601 txindislem 22773 iscau3 24431 iscmet3 24446 ovolctb 24643 itg2splitlem 24902 deg1fvi 25239 deg1invg 25260 dgrle 25393 logfac 25745 fnpreimac 30995 ptpconn 33182 dicvscacl 39192 elinlem 41166 brfvid 41255 fvilbd 41257 |
Copyright terms: Public domain | W3C validator |