MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idinxpres Structured version   Visualization version   GIF version

Theorem idinxpres 5995
Description: The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 5996) to cartesian product. (Revised by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idinxpres ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴𝐵))

Proof of Theorem idinxpres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elidinxp 5992 . . 3 (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑦 ∈ (𝐴𝐵)𝑥 = ⟨𝑦, 𝑦⟩)
2 elrid 5994 . . 3 (𝑥 ∈ ( I ↾ (𝐴𝐵)) ↔ ∃𝑦 ∈ (𝐴𝐵)𝑥 = ⟨𝑦, 𝑦⟩)
31, 2bitr4i 278 . 2 (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ 𝑥 ∈ ( I ↾ (𝐴𝐵)))
43eqriv 2728 1 ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wrex 3056  cin 3896  cop 4579   I cid 5508   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-res 5626
This theorem is referenced by:  idinxpresid  5996
  Copyright terms: Public domain W3C validator