MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idinxpres Structured version   Visualization version   GIF version

Theorem idinxpres 6007
Description: The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6008) to cartesian product. (Revised by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idinxpres ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴𝐵))

Proof of Theorem idinxpres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elidinxp 6004 . . 3 (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑦 ∈ (𝐴𝐵)𝑥 = ⟨𝑦, 𝑦⟩)
2 elrid 6006 . . 3 (𝑥 ∈ ( I ↾ (𝐴𝐵)) ↔ ∃𝑦 ∈ (𝐴𝐵)𝑥 = ⟨𝑦, 𝑦⟩)
31, 2bitr4i 278 . 2 (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ 𝑥 ∈ ( I ↾ (𝐴𝐵)))
43eqriv 2726 1 ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  cin 3910  cop 4591   I cid 5525   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-res 5643
This theorem is referenced by:  idinxpresid  6008
  Copyright terms: Public domain W3C validator