![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idinxpres | Structured version Visualization version GIF version |
Description: The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6077) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idinxpres | ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elidinxp 6073 | . . 3 ⊢ (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)𝑥 = 〈𝑦, 𝑦〉) | |
2 | elrid 6075 | . . 3 ⊢ (𝑥 ∈ ( I ↾ (𝐴 ∩ 𝐵)) ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)𝑥 = 〈𝑦, 𝑦〉) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ 𝑥 ∈ ( I ↾ (𝐴 ∩ 𝐵))) |
4 | 3 | eqriv 2737 | 1 ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∩ cin 3975 〈cop 4654 I cid 5592 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: idinxpresid 6077 |
Copyright terms: Public domain | W3C validator |