| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idinxpres | Structured version Visualization version GIF version | ||
| Description: The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6019) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| idinxpres | ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elidinxp 6015 | . . 3 ⊢ (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)𝑥 = 〈𝑦, 𝑦〉) | |
| 2 | elrid 6017 | . . 3 ⊢ (𝑥 ∈ ( I ↾ (𝐴 ∩ 𝐵)) ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)𝑥 = 〈𝑦, 𝑦〉) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ 𝑥 ∈ ( I ↾ (𝐴 ∩ 𝐵))) |
| 4 | 3 | eqriv 2726 | 1 ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 〈cop 4595 I cid 5532 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-res 5650 |
| This theorem is referenced by: idinxpresid 6019 |
| Copyright terms: Public domain | W3C validator |