![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idinxpres | Structured version Visualization version GIF version |
Description: The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6041) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idinxpres | ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elidinxp 6037 | . . 3 ⊢ (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)𝑥 = ⟨𝑦, 𝑦⟩) | |
2 | elrid 6039 | . . 3 ⊢ (𝑥 ∈ ( I ↾ (𝐴 ∩ 𝐵)) ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)𝑥 = ⟨𝑦, 𝑦⟩) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ 𝑥 ∈ ( I ↾ (𝐴 ∩ 𝐵))) |
4 | 3 | eqriv 2723 | 1 ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ∩ cin 3942 ⟨cop 4629 I cid 5566 × cxp 5667 ↾ cres 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-res 5681 |
This theorem is referenced by: idinxpresid 6041 |
Copyright terms: Public domain | W3C validator |