MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idinxpresid Structured version   Visualization version   GIF version

Theorem idinxpresid 6077
Description: The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idinxpresid ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)

Proof of Theorem idinxpresid
StepHypRef Expression
1 idinxpres 6076 . 2 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ (𝐴𝐴))
2 inidm 4248 . . 3 (𝐴𝐴) = 𝐴
32reseq2i 6006 . 2 ( I ↾ (𝐴𝐴)) = ( I ↾ 𝐴)
41, 3eqtri 2768 1 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975   I cid 5592   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-res 5712
This theorem is referenced by:  idssxp  6078  bj-diagval2  37141  idinxpssinxp2  38274
  Copyright terms: Public domain W3C validator