Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idinxpresid | Structured version Visualization version GIF version |
Description: The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idinxpresid | ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpres 5954 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ (𝐴 ∩ 𝐴)) | |
2 | inidm 4152 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | reseq2i 5888 | . 2 ⊢ ( I ↾ (𝐴 ∩ 𝐴)) = ( I ↾ 𝐴) |
4 | 1, 3 | eqtri 2766 | 1 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 I cid 5488 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: idssxp 5956 bj-diagval2 35346 idinxpssinxp2 36453 |
Copyright terms: Public domain | W3C validator |