MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idinxpresid Structured version   Visualization version   GIF version

Theorem idinxpresid 5955
Description: The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idinxpresid ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)

Proof of Theorem idinxpresid
StepHypRef Expression
1 idinxpres 5954 . 2 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ (𝐴𝐴))
2 inidm 4152 . . 3 (𝐴𝐴) = 𝐴
32reseq2i 5888 . 2 ( I ↾ (𝐴𝐴)) = ( I ↾ 𝐴)
41, 3eqtri 2766 1 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3886   I cid 5488   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  idssxp  5956  bj-diagval2  35346  idinxpssinxp2  36453
  Copyright terms: Public domain W3C validator