Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idinxpresid | Structured version Visualization version GIF version |
Description: The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
Ref | Expression |
---|---|
idinxpresid | ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpres 5943 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ (𝐴 ∩ 𝐴)) | |
2 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | reseq2i 5877 | . 2 ⊢ ( I ↾ (𝐴 ∩ 𝐴)) = ( I ↾ 𝐴) |
4 | 1, 3 | eqtri 2766 | 1 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 I cid 5479 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: idssxp 5945 bj-diagval2 35273 idinxpssinxp2 36380 |
Copyright terms: Public domain | W3C validator |