MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idinxpresid Structured version   Visualization version   GIF version

Theorem idinxpresid 5944
Description: The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idinxpresid ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)

Proof of Theorem idinxpresid
StepHypRef Expression
1 idinxpres 5943 . 2 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ (𝐴𝐴))
2 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
32reseq2i 5877 . 2 ( I ↾ (𝐴𝐴)) = ( I ↾ 𝐴)
41, 3eqtri 2766 1 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3882   I cid 5479   × cxp 5578  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by:  idssxp  5945  bj-diagval2  35273  idinxpssinxp2  36380
  Copyright terms: Public domain W3C validator