| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idinxpresid | Structured version Visualization version GIF version | ||
| Description: The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| idinxpresid | ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpres 5998 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ (𝐴 ∩ 𝐴)) | |
| 2 | inidm 4178 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 3 | 2 | reseq2i 5927 | . 2 ⊢ ( I ↾ (𝐴 ∩ 𝐴)) = ( I ↾ 𝐴) |
| 4 | 1, 3 | eqtri 2752 | 1 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3902 I cid 5513 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: idssxp 6000 bj-diagval2 37159 idinxpssinxp2 38302 |
| Copyright terms: Public domain | W3C validator |