Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp3 Structured version   Visualization version   GIF version

Theorem idinxpssinxp3 37727
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 16-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
idinxpssinxp3 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ 𝑅)

Proof of Theorem idinxpssinxp3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idinxpssinxp2 37726 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
2 idrefALT 6111 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
31, 2bitr4i 278 1 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3056  cin 3943  wss 3944   class class class wbr 5142   I cid 5569   × cxp 5670  cres 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-res 5684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator