MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrefALT Structured version   Visualization version   GIF version

Theorem idrefALT 5691
Description: Alternate proof of idref 6603 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idrefALT (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴

Proof of Theorem idrefALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3749 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
2 elrid 5634 . . . . . 6 (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝑥⟩)
32imbi1i 340 . . . . 5 ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ (∃𝑥𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅))
4 r19.23v 3170 . . . . 5 (∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅) ↔ (∃𝑥𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅))
5 eleq1 2832 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦𝑅 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅))
6 df-br 4810 . . . . . . . 8 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
75, 6syl6bbr 280 . . . . . . 7 (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦𝑅𝑥𝑅𝑥))
87pm5.74i 262 . . . . . 6 ((𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅) ↔ (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
98ralbii 3127 . . . . 5 (∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅) ↔ ∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
103, 4, 93bitr2i 290 . . . 4 ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
1110albii 1914 . . 3 (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑦𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
12 ralcom4 3377 . . 3 (∀𝑥𝐴𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑦𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
13 opex 5088 . . . . 5 𝑥, 𝑥⟩ ∈ V
14 biidd 253 . . . . 5 (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑥𝑅𝑥𝑥𝑅𝑥))
1513, 14ceqsalv 3386 . . . 4 (∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥)
1615ralbii 3127 . . 3 (∀𝑥𝐴𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
1711, 12, 163bitr2i 290 . 2 (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
181, 17bitri 266 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wal 1650   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3732  cop 4340   class class class wbr 4809   I cid 5184  cres 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-id 5185  df-xp 5283  df-rel 5284  df-res 5289
This theorem is referenced by:  idinxpssinxp2  34518  idinxpssinxp3  34519  symrefref3  34739  refsymrels3  34741  elrefsymrels3  34745  dfeqvrels3  34762  refrelsred3  34804  refrelred3  34807
  Copyright terms: Public domain W3C validator