![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idrefALT | Structured version Visualization version GIF version |
Description: Alternate proof of idref 7140 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idrefALT | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3963 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅)) | |
2 | elrid 6039 | . . . . . 6 ⊢ (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩) | |
3 | 2 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅)) |
4 | r19.23v 3176 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅)) | |
5 | eleq1 2815 | . . . . . . . 8 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦 ∈ 𝑅 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)) | |
6 | df-br 5142 | . . . . . . . 8 ⊢ (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅) | |
7 | 5, 6 | bitr4di 289 | . . . . . . 7 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
9 | 8 | ralbii 3087 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
10 | 3, 4, 9 | 3bitr2i 299 | . . . 4 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
11 | 10 | albii 1813 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
12 | ralcom4 3277 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) | |
13 | opex 5457 | . . . . 5 ⊢ ⟨𝑥, 𝑥⟩ ∈ V | |
14 | biidd 262 | . . . . 5 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑥)) | |
15 | 13, 14 | ceqsalv 3506 | . . . 4 ⊢ (∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) |
16 | 15 | ralbii 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
17 | 11, 12, 16 | 3bitr2i 299 | . 2 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
18 | 1, 17 | bitri 275 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 ⟨cop 4629 class class class wbr 5141 I cid 5566 ↾ cres 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-res 5681 |
This theorem is referenced by: idinxpssinxp2 37700 idinxpssinxp3 37701 symrefref3 37947 refsymrels3 37949 elrefsymrels3 37953 dfeqvrels3 37972 refrelsredund3 38017 refrelredund3 38020 |
Copyright terms: Public domain | W3C validator |