![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idrefALT | Structured version Visualization version GIF version |
Description: Alternate proof of idref 7180 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idrefALT | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3993 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅)) | |
2 | elrid 6075 | . . . . . 6 ⊢ (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉) | |
3 | 2 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅)) |
4 | r19.23v 3189 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅)) | |
5 | eleq1 2832 | . . . . . . . 8 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑦 ∈ 𝑅 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅)) | |
6 | df-br 5167 | . . . . . . . 8 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
7 | 5, 6 | bitr4di 289 | . . . . . . 7 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑦 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
9 | 8 | ralbii 3099 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
10 | 3, 4, 9 | 3bitr2i 299 | . . . 4 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
11 | 10 | albii 1817 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
12 | ralcom4 3292 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) | |
13 | opex 5484 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V | |
14 | biidd 262 | . . . . 5 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑥)) | |
15 | 13, 14 | ceqsalv 3529 | . . . 4 ⊢ (∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) |
16 | 15 | ralbii 3099 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
17 | 11, 12, 16 | 3bitr2i 299 | . 2 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
18 | 1, 17 | bitri 275 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 I cid 5592 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: idinxpssinxp2 38274 idinxpssinxp3 38275 symrefref3 38520 refsymrels3 38522 elrefsymrels3 38526 dfeqvrels3 38545 refrelsredund3 38590 refrelredund3 38593 |
Copyright terms: Public domain | W3C validator |