![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idrefALT | Structured version Visualization version GIF version |
Description: Alternate proof of idref 7097 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idrefALT | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3935 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅)) | |
2 | elrid 6004 | . . . . . 6 ⊢ (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩) | |
3 | 2 | imbi1i 350 | . . . . 5 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅)) |
4 | r19.23v 3180 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅)) | |
5 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦 ∈ 𝑅 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)) | |
6 | df-br 5111 | . . . . . . . 8 ⊢ (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅) | |
7 | 5, 6 | bitr4di 289 | . . . . . . 7 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
9 | 8 | ralbii 3097 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
10 | 3, 4, 9 | 3bitr2i 299 | . . . 4 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
11 | 10 | albii 1822 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
12 | ralcom4 3272 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) | |
13 | opex 5426 | . . . . 5 ⊢ ⟨𝑥, 𝑥⟩ ∈ V | |
14 | biidd 262 | . . . . 5 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑥)) | |
15 | 13, 14 | ceqsalv 3484 | . . . 4 ⊢ (∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) |
16 | 15 | ralbii 3097 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
17 | 11, 12, 16 | 3bitr2i 299 | . 2 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
18 | 1, 17 | bitri 275 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ∃wrex 3074 ⊆ wss 3915 ⟨cop 4597 class class class wbr 5110 I cid 5535 ↾ cres 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-res 5650 |
This theorem is referenced by: idinxpssinxp2 36808 idinxpssinxp3 36809 symrefref3 37055 refsymrels3 37057 elrefsymrels3 37061 dfeqvrels3 37080 refrelsredund3 37125 refrelredund3 37128 |
Copyright terms: Public domain | W3C validator |