MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrefALT Structured version   Visualization version   GIF version

Theorem idrefALT 6134
Description: Alternate proof of idref 7166 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idrefALT (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴

Proof of Theorem idrefALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3980 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
2 elrid 6066 . . . . . 6 (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝑥⟩)
32imbi1i 349 . . . . 5 ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ (∃𝑥𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅))
4 r19.23v 3181 . . . . 5 (∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅) ↔ (∃𝑥𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅))
5 eleq1 2827 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦𝑅 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅))
6 df-br 5149 . . . . . . . 8 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
75, 6bitr4di 289 . . . . . . 7 (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦𝑅𝑥𝑅𝑥))
87pm5.74i 271 . . . . . 6 ((𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅) ↔ (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
98ralbii 3091 . . . . 5 (∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦𝑅) ↔ ∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
103, 4, 93bitr2i 299 . . . 4 ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
1110albii 1816 . . 3 (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑦𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
12 ralcom4 3284 . . 3 (∀𝑥𝐴𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑦𝑥𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥))
13 opex 5475 . . . . 5 𝑥, 𝑥⟩ ∈ V
14 biidd 262 . . . . 5 (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑥𝑅𝑥𝑥𝑅𝑥))
1513, 14ceqsalv 3519 . . . 4 (∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥)
1615ralbii 3091 . . 3 (∀𝑥𝐴𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
1711, 12, 163bitr2i 299 . 2 (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
181, 17bitri 275 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  cop 4637   class class class wbr 5148   I cid 5582  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-res 5701
This theorem is referenced by:  idinxpssinxp2  38300  idinxpssinxp3  38301  symrefref3  38546  refsymrels3  38548  elrefsymrels3  38552  dfeqvrels3  38571  refrelsredund3  38616  refrelredund3  38619
  Copyright terms: Public domain W3C validator