Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idrefALT | Structured version Visualization version GIF version |
Description: Alternate proof of idref 7000 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idrefALT | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3903 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅)) | |
2 | elrid 5942 | . . . . . 6 ⊢ (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉) | |
3 | 2 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅)) |
4 | r19.23v 3207 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅)) | |
5 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑦 ∈ 𝑅 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅)) | |
6 | df-br 5071 | . . . . . . . 8 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
7 | 5, 6 | bitr4di 288 | . . . . . . 7 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑦 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
8 | 7 | pm5.74i 270 | . . . . . 6 ⊢ ((𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
9 | 8 | ralbii 3090 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
10 | 3, 4, 9 | 3bitr2i 298 | . . . 4 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
11 | 10 | albii 1823 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
12 | ralcom4 3161 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) | |
13 | opex 5373 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V | |
14 | biidd 261 | . . . . 5 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑥)) | |
15 | 13, 14 | ceqsalv 3457 | . . . 4 ⊢ (∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) |
16 | 15 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
17 | 11, 12, 16 | 3bitr2i 298 | . 2 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
18 | 1, 17 | bitri 274 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 I cid 5479 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: idinxpssinxp2 36380 idinxpssinxp3 36381 symrefref3 36605 refsymrels3 36607 elrefsymrels3 36611 dfeqvrels3 36629 refrelsredund3 36674 refrelredund3 36677 |
Copyright terms: Public domain | W3C validator |