| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idrefALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of idref 7085 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| idrefALT | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3915 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅)) | |
| 2 | elrid 5999 | . . . . . 6 ⊢ (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉) | |
| 3 | 2 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅)) |
| 4 | r19.23v 3160 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅)) | |
| 5 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑦 ∈ 𝑅 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅)) | |
| 6 | df-br 5094 | . . . . . . . 8 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
| 7 | 5, 6 | bitr4di 289 | . . . . . . 7 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑦 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
| 8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
| 9 | 8 | ralbii 3079 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
| 10 | 3, 4, 9 | 3bitr2i 299 | . . . 4 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
| 11 | 10 | albii 1820 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) |
| 12 | ralcom4 3259 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥)) | |
| 13 | opex 5407 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V | |
| 14 | biidd 262 | . . . . 5 ⊢ (𝑦 = 〈𝑥, 𝑥〉 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑥)) | |
| 15 | 13, 14 | ceqsalv 3477 | . . . 4 ⊢ (∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) |
| 16 | 15 | ralbii 3079 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 〈𝑥, 𝑥〉 → 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| 17 | 11, 12, 16 | 3bitr2i 299 | . 2 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| 18 | 1, 17 | bitri 275 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 〈cop 4581 class class class wbr 5093 I cid 5513 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: idinxpssinxp2 38376 idinxpssinxp3 38377 symrefref3 38680 refsymrels3 38682 elrefsymrels3 38686 dfeqvrels3 38705 refrelsredund3 38750 refrelredund3 38753 |
| Copyright terms: Public domain | W3C validator |