![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idrefALT | Structured version Visualization version GIF version |
Description: Alternate proof of idref 7144 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idrefALT | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3969 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅)) | |
2 | elrid 6046 | . . . . . 6 ⊢ (𝑦 ∈ ( I ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩) | |
3 | 2 | imbi1i 350 | . . . . 5 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅)) |
4 | r19.23v 3183 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ (∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅)) | |
5 | eleq1 2822 | . . . . . . . 8 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦 ∈ 𝑅 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)) | |
6 | df-br 5150 | . . . . . . . 8 ⊢ (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅) | |
7 | 5, 6 | bitr4di 289 | . . . . . . 7 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑦 ∈ 𝑅 ↔ 𝑥𝑅𝑥)) |
8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
9 | 8 | ralbii 3094 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
10 | 3, 4, 9 | 3bitr2i 299 | . . . 4 ⊢ ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
11 | 10 | albii 1822 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) |
12 | ralcom4 3284 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥)) | |
13 | opex 5465 | . . . . 5 ⊢ ⟨𝑥, 𝑥⟩ ∈ V | |
14 | biidd 262 | . . . . 5 ⊢ (𝑦 = ⟨𝑥, 𝑥⟩ → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑥)) | |
15 | 13, 14 | ceqsalv 3512 | . . . 4 ⊢ (∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) |
16 | 15 | ralbii 3094 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = ⟨𝑥, 𝑥⟩ → 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
17 | 11, 12, 16 | 3bitr2i 299 | . 2 ⊢ (∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ 𝑅) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
18 | 1, 17 | bitri 275 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 ⟨cop 4635 class class class wbr 5149 I cid 5574 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-res 5689 |
This theorem is referenced by: idinxpssinxp2 37187 idinxpssinxp3 37188 symrefref3 37434 refsymrels3 37436 elrefsymrels3 37440 dfeqvrels3 37459 refrelsredund3 37504 refrelredund3 37507 |
Copyright terms: Public domain | W3C validator |