Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp4 Structured version   Visualization version   GIF version

Theorem idinxpssinxp4 37844
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product (see also idinxpssinxp2 37842). (Contributed by Peter Mazsa, 8-Mar-2019.)
Assertion
Ref Expression
idinxpssinxp4 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem idinxpssinxp4
StepHypRef Expression
1 idinxpssinxp 37841 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦𝑥𝑅𝑦))
2 idinxpssinxp2 37842 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
31, 2bitr3i 276 1 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3051  cin 3940  wss 3941   class class class wbr 5144   I cid 5570   × cxp 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-res 5685
This theorem is referenced by:  refrelcoss3  37987
  Copyright terms: Public domain W3C validator