Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp4 Structured version   Visualization version   GIF version

Theorem idinxpssinxp4 36455
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product (see also idinxpssinxp2 36453). (Contributed by Peter Mazsa, 8-Mar-2019.)
Assertion
Ref Expression
idinxpssinxp4 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem idinxpssinxp4
StepHypRef Expression
1 idinxpssinxp 36452 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦𝑥𝑅𝑦))
2 idinxpssinxp2 36453 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
31, 2bitr3i 276 1 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3064  cin 3886  wss 3887   class class class wbr 5074   I cid 5488   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  refrelcoss3  36581
  Copyright terms: Public domain W3C validator