Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadisjld Structured version   Visualization version   GIF version

Theorem imadisjld 39291
Description: Natural dduction form of one side of imadisj 5725. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
imadisjld.1 (𝜑 → (dom 𝐴𝐵) = ∅)
Assertion
Ref Expression
imadisjld (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem imadisjld
StepHypRef Expression
1 imadisjld.1 . 2 (𝜑 → (dom 𝐴𝐵) = ∅)
2 imadisj 5725 . 2 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
31, 2sylibr 226 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  cin 3797  c0 4144  dom cdm 5342  cima 5345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4874  df-opab 4936  df-xp 5348  df-cnv 5350  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator