Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadisjld Structured version   Visualization version   GIF version

Theorem imadisjld 41236
Description: Natural dduction form of one side of imadisj 5920. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
imadisjld.1 (𝜑 → (dom 𝐴𝐵) = ∅)
Assertion
Ref Expression
imadisjld (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem imadisjld
StepHypRef Expression
1 imadisjld.1 . 2 (𝜑 → (dom 𝐴𝐵) = ∅)
2 imadisj 5920 . 2 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
31, 2sylibr 237 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  cin 3857  c0 4225  dom cdm 5524  cima 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator