| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadisjlnd | Structured version Visualization version GIF version | ||
| Description: Deduction form of one negated side of imadisj 6028. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| imadisjlnd.1 | ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) |
| Ref | Expression |
|---|---|
| imadisjlnd | ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadisjlnd.1 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) | |
| 2 | imadisj 6028 | . . . 4 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ ((𝐴 “ 𝐵) = ∅ → (dom 𝐴 ∩ 𝐵) = ∅) |
| 4 | 3 | necon3i 2960 | . 2 ⊢ ((dom 𝐴 ∩ 𝐵) ≠ ∅ → (𝐴 “ 𝐵) ≠ ∅) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∩ cin 3896 ∅c0 4280 dom cdm 5614 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: vonf1owev 35152 weiunfrlem 36508 wnefimgd 44264 grimuhgr 47997 |
| Copyright terms: Public domain | W3C validator |