Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imadisjlnd | Structured version Visualization version GIF version |
Description: Natural deduction form of one negated side of imadisj 5921. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
imadisjlnd.1 | ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) |
Ref | Expression |
---|---|
imadisjlnd | ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisjlnd.1 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) | |
2 | imadisj 5921 | . . . 4 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | |
3 | 2 | biimpi 219 | . . 3 ⊢ ((𝐴 “ 𝐵) = ∅ → (dom 𝐴 ∩ 𝐵) = ∅) |
4 | 3 | necon3i 2984 | . 2 ⊢ ((dom 𝐴 ∩ 𝐵) ≠ ∅ → (𝐴 “ 𝐵) ≠ ∅) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2952 ∩ cin 3858 ∅c0 4226 dom cdm 5525 “ cima 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 |
This theorem is referenced by: wnefimgd 41239 |
Copyright terms: Public domain | W3C validator |