Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadisjlnd Structured version   Visualization version   GIF version

Theorem imadisjlnd 42525
Description: Natural deduction form of one negated side of imadisj 6036. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
imadisjlnd.1 (𝜑 → (dom 𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
imadisjlnd (𝜑 → (𝐴𝐵) ≠ ∅)

Proof of Theorem imadisjlnd
StepHypRef Expression
1 imadisjlnd.1 . 2 (𝜑 → (dom 𝐴𝐵) ≠ ∅)
2 imadisj 6036 . . . 4 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
32biimpi 215 . . 3 ((𝐴𝐵) = ∅ → (dom 𝐴𝐵) = ∅)
43necon3i 2973 . 2 ((dom 𝐴𝐵) ≠ ∅ → (𝐴𝐵) ≠ ∅)
51, 4syl 17 1 (𝜑 → (𝐴𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wne 2940  cin 3913  c0 4286  dom cdm 5637  cima 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-cnv 5645  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650
This theorem is referenced by:  wnefimgd  42526
  Copyright terms: Public domain W3C validator