MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisjlnd Structured version   Visualization version   GIF version

Theorem imadisjlnd 6098
Description: Deduction form of one negated side of imadisj 6097. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
imadisjlnd.1 (𝜑 → (dom 𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
imadisjlnd (𝜑 → (𝐴𝐵) ≠ ∅)

Proof of Theorem imadisjlnd
StepHypRef Expression
1 imadisjlnd.1 . 2 (𝜑 → (dom 𝐴𝐵) ≠ ∅)
2 imadisj 6097 . . . 4 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
32biimpi 216 . . 3 ((𝐴𝐵) = ∅ → (dom 𝐴𝐵) = ∅)
43necon3i 2972 . 2 ((dom 𝐴𝐵) ≠ ∅ → (𝐴𝐵) ≠ ∅)
51, 4syl 17 1 (𝜑 → (𝐴𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2939  cin 3949  c0 4332  dom cdm 5684  cima 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697
This theorem is referenced by:  weiunfrlem  36466  wnefimgd  44179  grimuhgr  47883
  Copyright terms: Public domain W3C validator