Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadisjlnd Structured version   Visualization version   GIF version

Theorem imadisjlnd 41660
Description: Natural deduction form of one negated side of imadisj 5977. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
imadisjlnd.1 (𝜑 → (dom 𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
imadisjlnd (𝜑 → (𝐴𝐵) ≠ ∅)

Proof of Theorem imadisjlnd
StepHypRef Expression
1 imadisjlnd.1 . 2 (𝜑 → (dom 𝐴𝐵) ≠ ∅)
2 imadisj 5977 . . . 4 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
32biimpi 215 . . 3 ((𝐴𝐵) = ∅ → (dom 𝐴𝐵) = ∅)
43necon3i 2975 . 2 ((dom 𝐴𝐵) ≠ ∅ → (𝐴𝐵) ≠ ∅)
51, 4syl 17 1 (𝜑 → (𝐴𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  cin 3882  c0 4253  dom cdm 5580  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  wnefimgd  41661
  Copyright terms: Public domain W3C validator