| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadisjlnd | Structured version Visualization version GIF version | ||
| Description: Deduction form of one negated side of imadisj 6051. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| imadisjlnd.1 | ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) |
| Ref | Expression |
|---|---|
| imadisjlnd | ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadisjlnd.1 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) | |
| 2 | imadisj 6051 | . . . 4 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ ((𝐴 “ 𝐵) = ∅ → (dom 𝐴 ∩ 𝐵) = ∅) |
| 4 | 3 | necon3i 2957 | . 2 ⊢ ((dom 𝐴 ∩ 𝐵) ≠ ∅ → (𝐴 “ 𝐵) ≠ ∅) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∩ cin 3913 ∅c0 4296 dom cdm 5638 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: vonf1owev 35095 weiunfrlem 36452 wnefimgd 44150 grimuhgr 47884 |
| Copyright terms: Public domain | W3C validator |