MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 6079
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5689 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2737 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5924 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 6003 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 4201 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2760 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2737 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 298 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  cin 3947  c0 4322  dom cdm 5676  ran crn 5677  cres 5678  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  ndmima  6102  fnimadisj  6682  fnimaeq0  6683  fimacnvdisj  6769  frxp2  8132  frxp3  8139  acndom2  10051  isf34lem5  10375  isf34lem7  10376  isf34lem6  10377  limsupgre  15429  isercolllem3  15617  pf1rcl  22088  cnconn  23146  1stcfb  23169  xkohaus  23377  qtopeu  23440  fbasrn  23608  mbflimsup  25407  preiman0  32186  eulerpartlemt  33656  erdszelem5  34472  fnwe2lem2  42095  imadisjld  43213  imadisjlnd  43214
  Copyright terms: Public domain W3C validator