MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 6109
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5713 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2745 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5949 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 6041 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 4230 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2768 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2745 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 299 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cin 3975  c0 4352  dom cdm 5700  ran crn 5701  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  imadisjlnd  6110  ndmima  6133  fnimadisj  6712  fnimaeq0  6713  fimacnvdisj  6799  frxp2  8185  frxp3  8192  acndom2  10123  isf34lem5  10447  isf34lem7  10448  isf34lem6  10449  limsupgre  15527  isercolllem3  15715  pf1rcl  22374  cnconn  23451  1stcfb  23474  xkohaus  23682  qtopeu  23745  fbasrn  23913  mbflimsup  25720  preiman0  32721  eulerpartlemt  34336  erdszelem5  35163  fnwe2lem2  43008  imadisjld  44122
  Copyright terms: Public domain W3C validator