![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imadisj | Structured version Visualization version GIF version |
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
imadisj | ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5690 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | 1 | eqeq1i 2738 | . 2 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) |
3 | dm0rn0 5925 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) | |
4 | dmres 6004 | . . . 4 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
5 | incom 4202 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
6 | 4, 5 | eqtri 2761 | . . 3 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
7 | 6 | eqeq1i 2738 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
8 | 2, 3, 7 | 3bitr2i 299 | 1 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∩ cin 3948 ∅c0 4323 dom cdm 5677 ran crn 5678 ↾ cres 5679 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: ndmima 6103 fnimadisj 6683 fnimaeq0 6684 fimacnvdisj 6770 frxp2 8130 frxp3 8137 acndom2 10049 isf34lem5 10373 isf34lem7 10374 isf34lem6 10375 limsupgre 15425 isercolllem3 15613 pf1rcl 21868 cnconn 22926 1stcfb 22949 xkohaus 23157 qtopeu 23220 fbasrn 23388 mbflimsup 25183 preiman0 31962 eulerpartlemt 33401 erdszelem5 34217 fnwe2lem2 41841 imadisjld 42959 imadisjlnd 42960 |
Copyright terms: Public domain | W3C validator |