MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 5948
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5564 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2742 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5794 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 5873 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 4115 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2765 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2742 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 302 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  cin 3865  c0 4237  dom cdm 5551  ran crn 5552  cres 5553  cima 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564
This theorem is referenced by:  ndmima  5971  fnimadisj  6510  fnimaeq0  6511  fimacnvdisj  6597  acndom2  9668  isf34lem5  9992  isf34lem7  9993  isf34lem6  9994  limsupgre  15042  isercolllem3  15230  pf1rcl  21265  cnconn  22319  1stcfb  22342  xkohaus  22550  qtopeu  22613  fbasrn  22781  mbflimsup  24563  preiman0  30762  eulerpartlemt  32050  erdszelem5  32870  frxp2  33528  frxp3  33534  fnwe2lem2  40579  imadisjld  41447  imadisjlnd  41448
  Copyright terms: Public domain W3C validator