| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadisj | Structured version Visualization version GIF version | ||
| Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| imadisj | ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5634 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | 1 | eqeq1i 2738 | . 2 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) |
| 3 | dm0rn0 5870 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) | |
| 4 | dmres 5968 | . . . 4 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 5 | incom 4158 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 6 | 4, 5 | eqtri 2756 | . . 3 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
| 7 | 6 | eqeq1i 2738 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| 8 | 2, 3, 7 | 3bitr2i 299 | 1 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∩ cin 3897 ∅c0 4282 dom cdm 5621 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: imadisjlnd 6037 ndmima 6059 fnimadisj 6621 fnimaeq0 6622 fimacnvdisj 6709 frxp2 8083 frxp3 8090 acndom2 9956 isf34lem5 10280 isf34lem7 10281 isf34lem6 10282 limsupgre 15395 isercolllem3 15581 pf1rcl 22284 cnconn 23357 1stcfb 23380 xkohaus 23588 qtopeu 23651 fbasrn 23819 mbflimsup 25614 preiman0 32715 eulerpartlemt 34456 erdszelem5 35311 fnwe2lem2 43208 imadisjld 44317 |
| Copyright terms: Public domain | W3C validator |