| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadisj | Structured version Visualization version GIF version | ||
| Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| imadisj | ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5644 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) |
| 3 | dm0rn0 5878 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) | |
| 4 | dmres 5972 | . . . 4 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 5 | incom 4168 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 6 | 4, 5 | eqtri 2752 | . . 3 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
| 7 | 6 | eqeq1i 2734 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| 8 | 2, 3, 7 | 3bitr2i 299 | 1 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3910 ∅c0 4292 dom cdm 5631 ran crn 5632 ↾ cres 5633 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: imadisjlnd 6041 ndmima 6063 fnimadisj 6632 fnimaeq0 6633 fimacnvdisj 6720 frxp2 8100 frxp3 8107 acndom2 9983 isf34lem5 10307 isf34lem7 10308 isf34lem6 10309 limsupgre 15423 isercolllem3 15609 pf1rcl 22212 cnconn 23285 1stcfb 23308 xkohaus 23516 qtopeu 23579 fbasrn 23747 mbflimsup 25543 preiman0 32606 eulerpartlemt 34335 erdszelem5 35155 fnwe2lem2 43013 imadisjld 44122 |
| Copyright terms: Public domain | W3C validator |