| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadisj | Structured version Visualization version GIF version | ||
| Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| imadisj | ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) |
| 3 | dm0rn0 5888 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) | |
| 4 | dmres 5983 | . . . 4 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 5 | incom 4172 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 6 | 4, 5 | eqtri 2752 | . . 3 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
| 7 | 6 | eqeq1i 2734 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| 8 | 2, 3, 7 | 3bitr2i 299 | 1 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3913 ∅c0 4296 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: imadisjlnd 6052 ndmima 6074 fnimadisj 6650 fnimaeq0 6651 fimacnvdisj 6738 frxp2 8123 frxp3 8130 acndom2 10007 isf34lem5 10331 isf34lem7 10332 isf34lem6 10333 limsupgre 15447 isercolllem3 15633 pf1rcl 22236 cnconn 23309 1stcfb 23332 xkohaus 23540 qtopeu 23603 fbasrn 23771 mbflimsup 25567 preiman0 32633 eulerpartlemt 34362 erdszelem5 35182 fnwe2lem2 43040 imadisjld 44149 |
| Copyright terms: Public domain | W3C validator |