MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 6036
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5634 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2738 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5870 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 5968 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 4158 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2756 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2738 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 299 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cin 3897  c0 4282  dom cdm 5621  ran crn 5622  cres 5623  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  imadisjlnd  6037  ndmima  6059  fnimadisj  6621  fnimaeq0  6622  fimacnvdisj  6709  frxp2  8083  frxp3  8090  acndom2  9956  isf34lem5  10280  isf34lem7  10281  isf34lem6  10282  limsupgre  15395  isercolllem3  15581  pf1rcl  22284  cnconn  23357  1stcfb  23380  xkohaus  23588  qtopeu  23651  fbasrn  23819  mbflimsup  25614  preiman0  32715  eulerpartlemt  34456  erdszelem5  35311  fnwe2lem2  43208  imadisjld  44317
  Copyright terms: Public domain W3C validator