| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadisj | Structured version Visualization version GIF version | ||
| Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| imadisj | ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5654 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | 1 | eqeq1i 2735 | . 2 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) |
| 3 | dm0rn0 5891 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ ran (𝐴 ↾ 𝐵) = ∅) | |
| 4 | dmres 5986 | . . . 4 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 5 | incom 4175 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 6 | 4, 5 | eqtri 2753 | . . 3 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
| 7 | 6 | eqeq1i 2735 | . 2 ⊢ (dom (𝐴 ↾ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| 8 | 2, 3, 7 | 3bitr2i 299 | 1 ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3916 ∅c0 4299 dom cdm 5641 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: imadisjlnd 6055 ndmima 6077 fnimadisj 6653 fnimaeq0 6654 fimacnvdisj 6741 frxp2 8126 frxp3 8133 acndom2 10014 isf34lem5 10338 isf34lem7 10339 isf34lem6 10340 limsupgre 15454 isercolllem3 15640 pf1rcl 22243 cnconn 23316 1stcfb 23339 xkohaus 23547 qtopeu 23610 fbasrn 23778 mbflimsup 25574 preiman0 32640 eulerpartlemt 34369 erdszelem5 35189 fnwe2lem2 43047 imadisjld 44156 |
| Copyright terms: Public domain | W3C validator |