MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 6035
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5636 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2734 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5871 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 5967 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 4162 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2752 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2734 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 299 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3904  c0 4286  dom cdm 5623  ran crn 5624  cres 5625  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  imadisjlnd  6036  ndmima  6058  fnimadisj  6618  fnimaeq0  6619  fimacnvdisj  6706  frxp2  8084  frxp3  8091  acndom2  9967  isf34lem5  10291  isf34lem7  10292  isf34lem6  10293  limsupgre  15406  isercolllem3  15592  pf1rcl  22252  cnconn  23325  1stcfb  23348  xkohaus  23556  qtopeu  23619  fbasrn  23787  mbflimsup  25583  preiman0  32666  eulerpartlemt  34341  erdszelem5  35170  fnwe2lem2  43027  imadisjld  44136
  Copyright terms: Public domain W3C validator