MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 6051
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5651 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2734 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5888 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 5983 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 4172 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2752 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2734 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 299 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3913  c0 4296  dom cdm 5638  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  imadisjlnd  6052  ndmima  6074  fnimadisj  6650  fnimaeq0  6651  fimacnvdisj  6738  frxp2  8123  frxp3  8130  acndom2  10007  isf34lem5  10331  isf34lem7  10332  isf34lem6  10333  limsupgre  15447  isercolllem3  15633  pf1rcl  22236  cnconn  23309  1stcfb  23332  xkohaus  23540  qtopeu  23603  fbasrn  23771  mbflimsup  25567  preiman0  32633  eulerpartlemt  34362  erdszelem5  35182  fnwe2lem2  43040  imadisjld  44149
  Copyright terms: Public domain W3C validator