MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainrect Structured version   Visualization version   GIF version

Theorem imainrect 5760
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 5291 . . 3 ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
21rneqi 5522 . 2 ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3 df-ima 5292 . 2 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌)
4 df-ima 5292 . . . . 5 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ↾ (𝑌𝐴))
5 df-res 5291 . . . . . 6 (𝐺 ↾ (𝑌𝐴)) = (𝐺 ∩ ((𝑌𝐴) × V))
65rneqi 5522 . . . . 5 ran (𝐺 ↾ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
74, 6eqtri 2787 . . . 4 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
87ineq1i 3974 . . 3 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
9 cnvin 5725 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
10 inxp 5425 . . . . . . . . . 10 ((𝐴 × V) ∩ (V × 𝐵)) = ((𝐴 ∩ V) × (V ∩ 𝐵))
11 inv1 4134 . . . . . . . . . . 11 (𝐴 ∩ V) = 𝐴
12 incom 3969 . . . . . . . . . . . 12 (V ∩ 𝐵) = (𝐵 ∩ V)
13 inv1 4134 . . . . . . . . . . . 12 (𝐵 ∩ V) = 𝐵
1412, 13eqtri 2787 . . . . . . . . . . 11 (V ∩ 𝐵) = 𝐵
1511, 14xpeq12i 5307 . . . . . . . . . 10 ((𝐴 ∩ V) × (V ∩ 𝐵)) = (𝐴 × 𝐵)
1610, 15eqtr2i 2788 . . . . . . . . 9 (𝐴 × 𝐵) = ((𝐴 × V) ∩ (V × 𝐵))
1716ineq2i 3975 . . . . . . . 8 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
18 in32 3987 . . . . . . . 8 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵))
19 xpindir 5427 . . . . . . . . . . . 12 ((𝑌𝐴) × V) = ((𝑌 × V) ∩ (𝐴 × V))
2019ineq2i 3975 . . . . . . . . . . 11 (𝐺 ∩ ((𝑌𝐴) × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
21 inass 3985 . . . . . . . . . . 11 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
2220, 21eqtr4i 2790 . . . . . . . . . 10 (𝐺 ∩ ((𝑌𝐴) × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V))
2322ineq1i 3974 . . . . . . . . 9 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵))
24 inass 3985 . . . . . . . . 9 (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2523, 24eqtri 2787 . . . . . . . 8 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2617, 18, 253eqtr4i 2797 . . . . . . 7 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
2726cnveqi 5467 . . . . . 6 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
28 df-res 5291 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
29 cnvxp 5736 . . . . . . . 8 (V × 𝐵) = (𝐵 × V)
3029ineq2i 3975 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
3128, 30eqtr4i 2790 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
329, 27, 313eqtr4ri 2798 . . . . 5 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3332dmeqi 5495 . . . 4 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
34 incom 3969 . . . . 5 (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V))) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
35 dmres 5596 . . . . 5 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V)))
36 df-rn 5290 . . . . . 6 ran (𝐺 ∩ ((𝑌𝐴) × V)) = dom (𝐺 ∩ ((𝑌𝐴) × V))
3736ineq1i 3974 . . . . 5 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
3834, 35, 373eqtr4ri 2798 . . . 4 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵)
39 df-rn 5290 . . . 4 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
4033, 38, 393eqtr4ri 2798 . . 3 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
418, 40eqtr4i 2790 . 2 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
422, 3, 413eqtr4i 2797 1 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  Vcvv 3350  cin 3733   × cxp 5277  ccnv 5278  dom cdm 5279  ran crn 5280  cres 5281  cima 5282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-br 4812  df-opab 4874  df-xp 5285  df-rel 5286  df-cnv 5287  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292
This theorem is referenced by:  ecinxp  8029  marypha1lem  8550
  Copyright terms: Public domain W3C validator