MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn3 Structured version   Visualization version   GIF version

Theorem kgencn3 23587
Description: The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾)))

Proof of Theorem kgencn3
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . 7 𝐽 = 𝐽
2 eqid 2740 . . . . . . 7 𝐾 = 𝐾
31, 2cnf 23275 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽 𝐾)
43adantl 481 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓: 𝐽 𝐾)
5 cnvimass 6111 . . . . . . . . 9 (𝑓𝑥) ⊆ dom 𝑓
64fdmd 6757 . . . . . . . . . 10 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → dom 𝑓 = 𝐽)
76adantr 480 . . . . . . . . 9 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → dom 𝑓 = 𝐽)
85, 7sseqtrid 4061 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ⊆ 𝐽)
9 cnvresima 6261 . . . . . . . . . . . 12 ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦)
104ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑓: 𝐽 𝐾)
11 ffun 6750 . . . . . . . . . . . . . . 15 (𝑓: 𝐽 𝐾 → Fun 𝑓)
12 inpreima 7097 . . . . . . . . . . . . . . 15 (Fun 𝑓 → (𝑓 “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))))
1310, 11, 123syl 18 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓 “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))))
1413ineq1d 4240 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦) = (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦))
15 in32 4251 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦) = (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦)))
16 ssrin 4263 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ⊆ dom 𝑓 → ((𝑓𝑥) ∩ 𝑦) ⊆ (dom 𝑓𝑦))
175, 16ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∩ 𝑦) ⊆ (dom 𝑓𝑦)
18 dminss 6184 . . . . . . . . . . . . . . . . 17 (dom 𝑓𝑦) ⊆ (𝑓 “ (𝑓𝑦))
1917, 18sstri 4018 . . . . . . . . . . . . . . . 16 ((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦))
2019a1i 11 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦)))
21 dfss2 3994 . . . . . . . . . . . . . . 15 (((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦)) ↔ (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
2220, 21sylib 218 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
2315, 22eqtrid 2792 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦) = ((𝑓𝑥) ∩ 𝑦))
2414, 23eqtrd 2780 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦) = ((𝑓𝑥) ∩ 𝑦))
259, 24eqtrid 2792 . . . . . . . . . . 11 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
26 simpr 484 . . . . . . . . . . . . . . 15 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
2726ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑓 ∈ (𝐽 Cn 𝐾))
28 elpwi 4629 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 𝐽𝑦 𝐽)
2928ad2antrl 727 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑦 𝐽)
301cnrest 23314 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 𝐽) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾))
3127, 29, 30syl2anc 583 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾))
32 simpr 484 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top)
3332ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝐾 ∈ Top)
34 toptopon2 22945 . . . . . . . . . . . . . . 15 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3533, 34sylib 218 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝐾 ∈ (TopOn‘ 𝐾))
36 df-ima 5713 . . . . . . . . . . . . . . . 16 (𝑓𝑦) = ran (𝑓𝑦)
3736eqimss2i 4070 . . . . . . . . . . . . . . 15 ran (𝑓𝑦) ⊆ (𝑓𝑦)
3837a1i 11 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ran (𝑓𝑦) ⊆ (𝑓𝑦))
39 imassrn 6100 . . . . . . . . . . . . . . 15 (𝑓𝑦) ⊆ ran 𝑓
4010frnd 6755 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ran 𝑓 𝐾)
4139, 40sstrid 4020 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ⊆ 𝐾)
42 cnrest2 23315 . . . . . . . . . . . . . 14 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝑓𝑦) ⊆ (𝑓𝑦) ∧ (𝑓𝑦) ⊆ 𝐾) → ((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾) ↔ (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦)))))
4335, 38, 41, 42syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾) ↔ (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦)))))
4431, 43mpbid 232 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦))))
45 simplr 768 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐾))
46 simprr 772 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝐽t 𝑦) ∈ Comp)
47 imacmp 23426 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑦) ∈ Comp) → (𝐾t (𝑓𝑦)) ∈ Comp)
4827, 46, 47syl2anc 583 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝐾t (𝑓𝑦)) ∈ Comp)
49 kgeni 23566 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑘Gen‘𝐾) ∧ (𝐾t (𝑓𝑦)) ∈ Comp) → (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦)))
5045, 48, 49syl2anc 583 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦)))
51 cnima 23294 . . . . . . . . . . . 12 (((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦))) ∧ (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦))) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) ∈ (𝐽t 𝑦))
5244, 50, 51syl2anc 583 . . . . . . . . . . 11 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) ∈ (𝐽t 𝑦))
5325, 52eqeltrrd 2845 . . . . . . . . . 10 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦))
5453expr 456 . . . . . . . . 9 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))
5554ralrimiva 3152 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))
56 kgentop 23571 . . . . . . . . . . 11 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
5756ad3antrrr 729 . . . . . . . . . 10 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → 𝐽 ∈ Top)
58 toptopon2 22945 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5957, 58sylib 218 . . . . . . . . 9 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
60 elkgen 23565 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → ((𝑓𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝑓𝑥) ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))))
6159, 60syl 17 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → ((𝑓𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝑓𝑥) ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))))
628, 55, 61mpbir2and 712 . . . . . . 7 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ∈ (𝑘Gen‘𝐽))
63 kgenidm 23576 . . . . . . . 8 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
6463ad3antrrr 729 . . . . . . 7 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑘Gen‘𝐽) = 𝐽)
6562, 64eleqtrd 2846 . . . . . 6 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ∈ 𝐽)
6665ralrimiva 3152 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)
6756, 58sylib 218 . . . . . . 7 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ (TopOn‘ 𝐽))
68 kgentopon 23567 . . . . . . . 8 (𝐾 ∈ (TopOn‘ 𝐾) → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
6934, 68sylbi 217 . . . . . . 7 (𝐾 ∈ Top → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
70 iscn 23264 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾)) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
7167, 69, 70syl2an 595 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
7271adantr 480 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
734, 66, 72mpbir2and 712 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)))
7473ex 412 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾))))
7574ssrdv 4014 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn (𝑘Gen‘𝐾)))
7669adantl 481 . . . 4 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
77 toponcom 22955 . . . 4 ((𝐾 ∈ Top ∧ (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾)) → 𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)))
7832, 76, 77syl2anc 583 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)))
79 kgenss 23572 . . . 4 (𝐾 ∈ Top → 𝐾 ⊆ (𝑘Gen‘𝐾))
8079adantl 481 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ⊆ (𝑘Gen‘𝐾))
81 eqid 2740 . . . 4 (𝑘Gen‘𝐾) = (𝑘Gen‘𝐾)
8281cnss2 23306 . . 3 ((𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)) ∧ 𝐾 ⊆ (𝑘Gen‘𝐾)) → (𝐽 Cn (𝑘Gen‘𝐾)) ⊆ (𝐽 Cn 𝐾))
8378, 80, 82syl2anc 583 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn (𝑘Gen‘𝐾)) ⊆ (𝐽 Cn 𝐾))
8475, 83eqssd 4026 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937   Cn ccn 23253  Compccmp 23415  𝑘Genckgen 23562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-cmp 23416  df-kgen 23563
This theorem is referenced by:  kgen2cn  23588  txkgen  23681  qtopkgen  23739
  Copyright terms: Public domain W3C validator