MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn3 Structured version   Visualization version   GIF version

Theorem kgencn3 22163
Description: The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾)))

Proof of Theorem kgencn3
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . . 7 𝐽 = 𝐽
2 eqid 2798 . . . . . . 7 𝐾 = 𝐾
31, 2cnf 21851 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽 𝐾)
43adantl 485 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓: 𝐽 𝐾)
5 cnvimass 5916 . . . . . . . . 9 (𝑓𝑥) ⊆ dom 𝑓
64fdmd 6497 . . . . . . . . . 10 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → dom 𝑓 = 𝐽)
76adantr 484 . . . . . . . . 9 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → dom 𝑓 = 𝐽)
85, 7sseqtrid 3967 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ⊆ 𝐽)
9 cnvresima 6054 . . . . . . . . . . . 12 ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦)
104ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑓: 𝐽 𝐾)
11 ffun 6490 . . . . . . . . . . . . . . 15 (𝑓: 𝐽 𝐾 → Fun 𝑓)
12 inpreima 6811 . . . . . . . . . . . . . . 15 (Fun 𝑓 → (𝑓 “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))))
1310, 11, 123syl 18 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓 “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))))
1413ineq1d 4138 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦) = (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦))
15 in32 4148 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦) = (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦)))
16 ssrin 4160 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ⊆ dom 𝑓 → ((𝑓𝑥) ∩ 𝑦) ⊆ (dom 𝑓𝑦))
175, 16ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∩ 𝑦) ⊆ (dom 𝑓𝑦)
18 dminss 5977 . . . . . . . . . . . . . . . . 17 (dom 𝑓𝑦) ⊆ (𝑓 “ (𝑓𝑦))
1917, 18sstri 3924 . . . . . . . . . . . . . . . 16 ((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦))
2019a1i 11 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦)))
21 df-ss 3898 . . . . . . . . . . . . . . 15 (((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦)) ↔ (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
2220, 21sylib 221 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
2315, 22syl5eq 2845 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦) = ((𝑓𝑥) ∩ 𝑦))
2414, 23eqtrd 2833 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦) = ((𝑓𝑥) ∩ 𝑦))
259, 24syl5eq 2845 . . . . . . . . . . 11 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
26 simpr 488 . . . . . . . . . . . . . . 15 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
2726ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑓 ∈ (𝐽 Cn 𝐾))
28 elpwi 4506 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 𝐽𝑦 𝐽)
2928ad2antrl 727 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑦 𝐽)
301cnrest 21890 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 𝐽) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾))
3127, 29, 30syl2anc 587 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾))
32 simpr 488 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top)
3332ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝐾 ∈ Top)
34 toptopon2 21523 . . . . . . . . . . . . . . 15 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3533, 34sylib 221 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝐾 ∈ (TopOn‘ 𝐾))
36 df-ima 5532 . . . . . . . . . . . . . . . 16 (𝑓𝑦) = ran (𝑓𝑦)
3736eqimss2i 3974 . . . . . . . . . . . . . . 15 ran (𝑓𝑦) ⊆ (𝑓𝑦)
3837a1i 11 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ran (𝑓𝑦) ⊆ (𝑓𝑦))
39 imassrn 5907 . . . . . . . . . . . . . . 15 (𝑓𝑦) ⊆ ran 𝑓
4010frnd 6494 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ran 𝑓 𝐾)
4139, 40sstrid 3926 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ⊆ 𝐾)
42 cnrest2 21891 . . . . . . . . . . . . . 14 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝑓𝑦) ⊆ (𝑓𝑦) ∧ (𝑓𝑦) ⊆ 𝐾) → ((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾) ↔ (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦)))))
4335, 38, 41, 42syl3anc 1368 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾) ↔ (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦)))))
4431, 43mpbid 235 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦))))
45 simplr 768 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐾))
46 simprr 772 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝐽t 𝑦) ∈ Comp)
47 imacmp 22002 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑦) ∈ Comp) → (𝐾t (𝑓𝑦)) ∈ Comp)
4827, 46, 47syl2anc 587 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝐾t (𝑓𝑦)) ∈ Comp)
49 kgeni 22142 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑘Gen‘𝐾) ∧ (𝐾t (𝑓𝑦)) ∈ Comp) → (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦)))
5045, 48, 49syl2anc 587 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦)))
51 cnima 21870 . . . . . . . . . . . 12 (((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦))) ∧ (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦))) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) ∈ (𝐽t 𝑦))
5244, 50, 51syl2anc 587 . . . . . . . . . . 11 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) ∈ (𝐽t 𝑦))
5325, 52eqeltrrd 2891 . . . . . . . . . 10 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦))
5453expr 460 . . . . . . . . 9 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))
5554ralrimiva 3149 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))
56 kgentop 22147 . . . . . . . . . . 11 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
5756ad3antrrr 729 . . . . . . . . . 10 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → 𝐽 ∈ Top)
58 toptopon2 21523 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5957, 58sylib 221 . . . . . . . . 9 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
60 elkgen 22141 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → ((𝑓𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝑓𝑥) ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))))
6159, 60syl 17 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → ((𝑓𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝑓𝑥) ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))))
628, 55, 61mpbir2and 712 . . . . . . 7 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ∈ (𝑘Gen‘𝐽))
63 kgenidm 22152 . . . . . . . 8 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
6463ad3antrrr 729 . . . . . . 7 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑘Gen‘𝐽) = 𝐽)
6562, 64eleqtrd 2892 . . . . . 6 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ∈ 𝐽)
6665ralrimiva 3149 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)
6756, 58sylib 221 . . . . . . 7 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ (TopOn‘ 𝐽))
68 kgentopon 22143 . . . . . . . 8 (𝐾 ∈ (TopOn‘ 𝐾) → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
6934, 68sylbi 220 . . . . . . 7 (𝐾 ∈ Top → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
70 iscn 21840 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾)) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
7167, 69, 70syl2an 598 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
7271adantr 484 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
734, 66, 72mpbir2and 712 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)))
7473ex 416 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾))))
7574ssrdv 3921 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn (𝑘Gen‘𝐾)))
7669adantl 485 . . . 4 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
77 toponcom 21533 . . . 4 ((𝐾 ∈ Top ∧ (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾)) → 𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)))
7832, 76, 77syl2anc 587 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)))
79 kgenss 22148 . . . 4 (𝐾 ∈ Top → 𝐾 ⊆ (𝑘Gen‘𝐾))
8079adantl 485 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ⊆ (𝑘Gen‘𝐾))
81 eqid 2798 . . . 4 (𝑘Gen‘𝐾) = (𝑘Gen‘𝐾)
8281cnss2 21882 . . 3 ((𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)) ∧ 𝐾 ⊆ (𝑘Gen‘𝐾)) → (𝐽 Cn (𝑘Gen‘𝐾)) ⊆ (𝐽 Cn 𝐾))
8378, 80, 82syl2anc 587 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn (𝑘Gen‘𝐾)) ⊆ (𝐽 Cn 𝐾))
8475, 83eqssd 3932 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515   Cn ccn 21829  Compccmp 21991  𝑘Genckgen 22138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cmp 21992  df-kgen 22139
This theorem is referenced by:  kgen2cn  22164  txkgen  22257  qtopkgen  22315
  Copyright terms: Public domain W3C validator