| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | filelss 23860 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
| 3 | 2 | 3adant1 1131 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
| 4 | | resttopon 23169 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 5 | 1, 3, 4 | syl2anc 584 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 6 | | filfbas 23856 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| 7 | 6 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
| 8 | | simp3 1139 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
| 9 | | fbncp 23847 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
| 10 | 7, 8, 9 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
| 11 | | simp2 1138 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
| 12 | | trfil3 23896 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
| 13 | 11, 3, 12 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
| 14 | 10, 13 | mpbird 257 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) |
| 15 | | fclsopn 24022 |
. . . . 5
⊢ (((𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅)))) |
| 16 | 5, 14, 15 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅)))) |
| 17 | | in32 4230 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑠) ∩ 𝑌) = ((𝑢 ∩ 𝑌) ∩ 𝑠) |
| 18 | | ineq2 4214 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → ((𝑢 ∩ 𝑌) ∩ 𝑠) = ((𝑢 ∩ 𝑌) ∩ 𝑡)) |
| 19 | 17, 18 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝑢 ∩ 𝑠) ∩ 𝑌) = ((𝑢 ∩ 𝑌) ∩ 𝑡)) |
| 20 | 19 | neeq1d 3000 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ ↔ ((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅)) |
| 21 | 20 | rspccv 3619 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ → (𝑡 ∈ 𝐹 → ((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅)) |
| 22 | | inss1 4237 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑢 |
| 23 | | ssrin 4242 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑌) ⊆ 𝑢 → ((𝑢 ∩ 𝑌) ∩ 𝑡) ⊆ (𝑢 ∩ 𝑡)) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑌) ∩ 𝑡) ⊆ (𝑢 ∩ 𝑡) |
| 25 | | ssn0 4404 |
. . . . . . . . . . . 12
⊢ ((((𝑢 ∩ 𝑌) ∩ 𝑡) ⊆ (𝑢 ∩ 𝑡) ∧ ((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅) → (𝑢 ∩ 𝑡) ≠ ∅) |
| 26 | 24, 25 | mpan 690 |
. . . . . . . . . . 11
⊢ (((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅ → (𝑢 ∩ 𝑡) ≠ ∅) |
| 27 | 21, 26 | syl6 35 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ → (𝑡 ∈ 𝐹 → (𝑢 ∩ 𝑡) ≠ ∅)) |
| 28 | 27 | ralrimiv 3145 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅) |
| 29 | 11 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
| 30 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → 𝑠 ∈ 𝐹) |
| 31 | 8 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
| 32 | | filin 23862 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ 𝐹) |
| 33 | 29, 30, 31, 32 | syl3anc 1373 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ 𝐹) |
| 34 | | ineq2 4214 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑠 ∩ 𝑌) → (𝑢 ∩ 𝑡) = (𝑢 ∩ (𝑠 ∩ 𝑌))) |
| 35 | | inass 4228 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑠) ∩ 𝑌) = (𝑢 ∩ (𝑠 ∩ 𝑌)) |
| 36 | 34, 35 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑠 ∩ 𝑌) → (𝑢 ∩ 𝑡) = ((𝑢 ∩ 𝑠) ∩ 𝑌)) |
| 37 | 36 | neeq1d 3000 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑠 ∩ 𝑌) → ((𝑢 ∩ 𝑡) ≠ ∅ ↔ ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 38 | 37 | rspcv 3618 |
. . . . . . . . . . 11
⊢ ((𝑠 ∩ 𝑌) ∈ 𝐹 → (∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅ → ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 39 | 33, 38 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → (∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅ → ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 40 | 39 | ralrimdva 3154 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅ → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 41 | 28, 40 | impbid2 226 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ ↔ ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅)) |
| 42 | 41 | imbi2d 340 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅) ↔ (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
| 43 | 42 | ralbidva 3176 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
| 44 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
| 45 | 44 | inex1 5317 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝑌) ∈ V |
| 46 | 45 | a1i 11 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ V) |
| 47 | | elrest 17472 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑦 = (𝑢 ∩ 𝑌))) |
| 48 | 47 | 3adant2 1132 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑦 = (𝑢 ∩ 𝑌))) |
| 49 | 48 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑦 = (𝑢 ∩ 𝑌))) |
| 50 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑢 ∩ 𝑌))) |
| 51 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑢 ∩ 𝑌) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑌)) |
| 52 | 51 | rbaib 538 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑌 → (𝑥 ∈ (𝑢 ∩ 𝑌) ↔ 𝑥 ∈ 𝑢)) |
| 53 | 52 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝑢 ∩ 𝑌) ↔ 𝑥 ∈ 𝑢)) |
| 54 | 50, 53 | sylan9bbr 510 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑢 ∩ 𝑌)) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑢)) |
| 55 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑠 ∈ V |
| 56 | 55 | inex1 5317 |
. . . . . . . . . . 11
⊢ (𝑠 ∩ 𝑌) ∈ V |
| 57 | 56 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ V) |
| 58 | | elrest 17472 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑧 ∈ (𝐹 ↾t 𝑌) ↔ ∃𝑠 ∈ 𝐹 𝑧 = (𝑠 ∩ 𝑌))) |
| 59 | 58 | 3adant1 1131 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑧 ∈ (𝐹 ↾t 𝑌) ↔ ∃𝑠 ∈ 𝐹 𝑧 = (𝑠 ∩ 𝑌))) |
| 60 | 59 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑧 ∈ (𝐹 ↾t 𝑌) ↔ ∃𝑠 ∈ 𝐹 𝑧 = (𝑠 ∩ 𝑌))) |
| 61 | | ineq2 4214 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑠 ∩ 𝑌) → (𝑦 ∩ 𝑧) = (𝑦 ∩ (𝑠 ∩ 𝑌))) |
| 62 | 61 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 = (𝑠 ∩ 𝑌)) → (𝑦 ∩ 𝑧) = (𝑦 ∩ (𝑠 ∩ 𝑌))) |
| 63 | 62 | neeq1d 3000 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 = (𝑠 ∩ 𝑌)) → ((𝑦 ∩ 𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅)) |
| 64 | 57, 60, 63 | ralxfr2d 5410 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅)) |
| 65 | | ineq1 4213 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (𝑦 ∩ (𝑠 ∩ 𝑌)) = ((𝑢 ∩ 𝑌) ∩ (𝑠 ∩ 𝑌))) |
| 66 | | inindir 4236 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑠) ∩ 𝑌) = ((𝑢 ∩ 𝑌) ∩ (𝑠 ∩ 𝑌)) |
| 67 | 65, 66 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (𝑦 ∩ (𝑠 ∩ 𝑌)) = ((𝑢 ∩ 𝑠) ∩ 𝑌)) |
| 68 | 67 | neeq1d 3000 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑢 ∩ 𝑌) → ((𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅ ↔ ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 69 | 68 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (∀𝑠 ∈ 𝐹 (𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 70 | 64, 69 | sylan9bb 509 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑢 ∩ 𝑌)) → (∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
| 71 | 54, 70 | imbi12d 344 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑢 ∩ 𝑌)) → ((𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅) ↔ (𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅))) |
| 72 | 46, 49, 71 | ralxfr2d 5410 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅))) |
| 73 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
| 74 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐹 ∈ (Fil‘𝑋)) |
| 75 | 3 | sselda 3983 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 76 | | fclsopn 24022 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅)))) |
| 77 | 76 | baibd 539 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
| 78 | 73, 74, 75, 77 | syl21anc 838 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
| 79 | 43, 72, 78 | 3bitr4d 311 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅) ↔ 𝑥 ∈ (𝐽 fClus 𝐹))) |
| 80 | 79 | pm5.32da 579 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅)) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fClus 𝐹)))) |
| 81 | 16, 80 | bitrd 279 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fClus 𝐹)))) |
| 82 | | elin 3967 |
. . . 4
⊢ (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fClus 𝐹) ∧ 𝑥 ∈ 𝑌)) |
| 83 | 82 | biancomi 462 |
. . 3
⊢ (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fClus 𝐹))) |
| 84 | 81, 83 | bitr4di 289 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌))) |
| 85 | 84 | eqrdv 2735 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌)) |