MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsrest Structured version   Visualization version   GIF version

Theorem fclsrest 23535
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fclsrest ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ ((𝐽 β†Ύt π‘Œ) fClus (𝐹 β†Ύt π‘Œ)) = ((𝐽 fClus 𝐹) ∩ π‘Œ))

Proof of Theorem fclsrest
Dummy variables 𝑠 𝑑 𝑒 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 filelss 23363 . . . . . . 7 ((𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ π‘Œ βŠ† 𝑋)
323adant1 1130 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ π‘Œ βŠ† 𝑋)
4 resttopon 22672 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (𝐽 β†Ύt π‘Œ) ∈ (TopOnβ€˜π‘Œ))
51, 3, 4syl2anc 584 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (𝐽 β†Ύt π‘Œ) ∈ (TopOnβ€˜π‘Œ))
6 filfbas 23359 . . . . . . . 8 (𝐹 ∈ (Filβ€˜π‘‹) β†’ 𝐹 ∈ (fBasβ€˜π‘‹))
763ad2ant2 1134 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ 𝐹 ∈ (fBasβ€˜π‘‹))
8 simp3 1138 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ π‘Œ ∈ 𝐹)
9 fbncp 23350 . . . . . . 7 ((𝐹 ∈ (fBasβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ Β¬ (𝑋 βˆ– π‘Œ) ∈ 𝐹)
107, 8, 9syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ Β¬ (𝑋 βˆ– π‘Œ) ∈ 𝐹)
11 simp2 1137 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ 𝐹 ∈ (Filβ€˜π‘‹))
12 trfil3 23399 . . . . . . 7 ((𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ ((𝐹 β†Ύt π‘Œ) ∈ (Filβ€˜π‘Œ) ↔ Β¬ (𝑋 βˆ– π‘Œ) ∈ 𝐹))
1311, 3, 12syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ ((𝐹 β†Ύt π‘Œ) ∈ (Filβ€˜π‘Œ) ↔ Β¬ (𝑋 βˆ– π‘Œ) ∈ 𝐹))
1410, 13mpbird 256 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (𝐹 β†Ύt π‘Œ) ∈ (Filβ€˜π‘Œ))
15 fclsopn 23525 . . . . 5 (((𝐽 β†Ύt π‘Œ) ∈ (TopOnβ€˜π‘Œ) ∧ (𝐹 β†Ύt π‘Œ) ∈ (Filβ€˜π‘Œ)) β†’ (π‘₯ ∈ ((𝐽 β†Ύt π‘Œ) fClus (𝐹 β†Ύt π‘Œ)) ↔ (π‘₯ ∈ π‘Œ ∧ βˆ€π‘¦ ∈ (𝐽 β†Ύt π‘Œ)(π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ…))))
165, 14, 15syl2anc 584 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (π‘₯ ∈ ((𝐽 β†Ύt π‘Œ) fClus (𝐹 β†Ύt π‘Œ)) ↔ (π‘₯ ∈ π‘Œ ∧ βˆ€π‘¦ ∈ (𝐽 β†Ύt π‘Œ)(π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ…))))
17 in32 4221 . . . . . . . . . . . . . 14 ((𝑒 ∩ 𝑠) ∩ π‘Œ) = ((𝑒 ∩ π‘Œ) ∩ 𝑠)
18 ineq2 4206 . . . . . . . . . . . . . 14 (𝑠 = 𝑑 β†’ ((𝑒 ∩ π‘Œ) ∩ 𝑠) = ((𝑒 ∩ π‘Œ) ∩ 𝑑))
1917, 18eqtrid 2784 . . . . . . . . . . . . 13 (𝑠 = 𝑑 β†’ ((𝑒 ∩ 𝑠) ∩ π‘Œ) = ((𝑒 ∩ π‘Œ) ∩ 𝑑))
2019neeq1d 3000 . . . . . . . . . . . 12 (𝑠 = 𝑑 β†’ (((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ… ↔ ((𝑒 ∩ π‘Œ) ∩ 𝑑) β‰  βˆ…))
2120rspccv 3609 . . . . . . . . . . 11 (βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ… β†’ (𝑑 ∈ 𝐹 β†’ ((𝑒 ∩ π‘Œ) ∩ 𝑑) β‰  βˆ…))
22 inss1 4228 . . . . . . . . . . . . 13 (𝑒 ∩ π‘Œ) βŠ† 𝑒
23 ssrin 4233 . . . . . . . . . . . . 13 ((𝑒 ∩ π‘Œ) βŠ† 𝑒 β†’ ((𝑒 ∩ π‘Œ) ∩ 𝑑) βŠ† (𝑒 ∩ 𝑑))
2422, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑒 ∩ π‘Œ) ∩ 𝑑) βŠ† (𝑒 ∩ 𝑑)
25 ssn0 4400 . . . . . . . . . . . 12 ((((𝑒 ∩ π‘Œ) ∩ 𝑑) βŠ† (𝑒 ∩ 𝑑) ∧ ((𝑒 ∩ π‘Œ) ∩ 𝑑) β‰  βˆ…) β†’ (𝑒 ∩ 𝑑) β‰  βˆ…)
2624, 25mpan 688 . . . . . . . . . . 11 (((𝑒 ∩ π‘Œ) ∩ 𝑑) β‰  βˆ… β†’ (𝑒 ∩ 𝑑) β‰  βˆ…)
2721, 26syl6 35 . . . . . . . . . 10 (βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ… β†’ (𝑑 ∈ 𝐹 β†’ (𝑒 ∩ 𝑑) β‰  βˆ…))
2827ralrimiv 3145 . . . . . . . . 9 (βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ… β†’ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…)
2911ad3antrrr 728 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) β†’ 𝐹 ∈ (Filβ€˜π‘‹))
30 simpr 485 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) β†’ 𝑠 ∈ 𝐹)
318ad3antrrr 728 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) β†’ π‘Œ ∈ 𝐹)
32 filin 23365 . . . . . . . . . . . 12 ((𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝑠 ∈ 𝐹 ∧ π‘Œ ∈ 𝐹) β†’ (𝑠 ∩ π‘Œ) ∈ 𝐹)
3329, 30, 31, 32syl3anc 1371 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) β†’ (𝑠 ∩ π‘Œ) ∈ 𝐹)
34 ineq2 4206 . . . . . . . . . . . . . 14 (𝑑 = (𝑠 ∩ π‘Œ) β†’ (𝑒 ∩ 𝑑) = (𝑒 ∩ (𝑠 ∩ π‘Œ)))
35 inass 4219 . . . . . . . . . . . . . 14 ((𝑒 ∩ 𝑠) ∩ π‘Œ) = (𝑒 ∩ (𝑠 ∩ π‘Œ))
3634, 35eqtr4di 2790 . . . . . . . . . . . . 13 (𝑑 = (𝑠 ∩ π‘Œ) β†’ (𝑒 ∩ 𝑑) = ((𝑒 ∩ 𝑠) ∩ π‘Œ))
3736neeq1d 3000 . . . . . . . . . . . 12 (𝑑 = (𝑠 ∩ π‘Œ) β†’ ((𝑒 ∩ 𝑑) β‰  βˆ… ↔ ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
3837rspcv 3608 . . . . . . . . . . 11 ((𝑠 ∩ π‘Œ) ∈ 𝐹 β†’ (βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ… β†’ ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
3933, 38syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) β†’ (βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ… β†’ ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
4039ralrimdva 3154 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) β†’ (βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ… β†’ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
4128, 40impbid2 225 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) β†’ (βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ… ↔ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…))
4241imbi2d 340 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) β†’ ((π‘₯ ∈ 𝑒 β†’ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…) ↔ (π‘₯ ∈ 𝑒 β†’ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…)))
4342ralbidva 3175 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…) ↔ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…)))
44 vex 3478 . . . . . . . . 9 𝑒 ∈ V
4544inex1 5317 . . . . . . . 8 (𝑒 ∩ π‘Œ) ∈ V
4645a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑒 ∈ 𝐽) β†’ (𝑒 ∩ π‘Œ) ∈ V)
47 elrest 17375 . . . . . . . . 9 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (𝑦 ∈ (𝐽 β†Ύt π‘Œ) ↔ βˆƒπ‘’ ∈ 𝐽 𝑦 = (𝑒 ∩ π‘Œ)))
48473adant2 1131 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (𝑦 ∈ (𝐽 β†Ύt π‘Œ) ↔ βˆƒπ‘’ ∈ 𝐽 𝑦 = (𝑒 ∩ π‘Œ)))
4948adantr 481 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (𝑦 ∈ (𝐽 β†Ύt π‘Œ) ↔ βˆƒπ‘’ ∈ 𝐽 𝑦 = (𝑒 ∩ π‘Œ)))
50 eleq2 2822 . . . . . . . . 9 (𝑦 = (𝑒 ∩ π‘Œ) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ (𝑒 ∩ π‘Œ)))
51 elin 3964 . . . . . . . . . . 11 (π‘₯ ∈ (𝑒 ∩ π‘Œ) ↔ (π‘₯ ∈ 𝑒 ∧ π‘₯ ∈ π‘Œ))
5251rbaib 539 . . . . . . . . . 10 (π‘₯ ∈ π‘Œ β†’ (π‘₯ ∈ (𝑒 ∩ π‘Œ) ↔ π‘₯ ∈ 𝑒))
5352adantl 482 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (π‘₯ ∈ (𝑒 ∩ π‘Œ) ↔ π‘₯ ∈ 𝑒))
5450, 53sylan9bbr 511 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑦 = (𝑒 ∩ π‘Œ)) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ 𝑒))
55 vex 3478 . . . . . . . . . . . 12 𝑠 ∈ V
5655inex1 5317 . . . . . . . . . . 11 (𝑠 ∩ π‘Œ) ∈ V
5756a1i 11 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑠 ∈ 𝐹) β†’ (𝑠 ∩ π‘Œ) ∈ V)
58 elrest 17375 . . . . . . . . . . . 12 ((𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (𝑧 ∈ (𝐹 β†Ύt π‘Œ) ↔ βˆƒπ‘  ∈ 𝐹 𝑧 = (𝑠 ∩ π‘Œ)))
59583adant1 1130 . . . . . . . . . . 11 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (𝑧 ∈ (𝐹 β†Ύt π‘Œ) ↔ βˆƒπ‘  ∈ 𝐹 𝑧 = (𝑠 ∩ π‘Œ)))
6059adantr 481 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (𝑧 ∈ (𝐹 β†Ύt π‘Œ) ↔ βˆƒπ‘  ∈ 𝐹 𝑧 = (𝑠 ∩ π‘Œ)))
61 ineq2 4206 . . . . . . . . . . . 12 (𝑧 = (𝑠 ∩ π‘Œ) β†’ (𝑦 ∩ 𝑧) = (𝑦 ∩ (𝑠 ∩ π‘Œ)))
6261adantl 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑧 = (𝑠 ∩ π‘Œ)) β†’ (𝑦 ∩ 𝑧) = (𝑦 ∩ (𝑠 ∩ π‘Œ)))
6362neeq1d 3000 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑧 = (𝑠 ∩ π‘Œ)) β†’ ((𝑦 ∩ 𝑧) β‰  βˆ… ↔ (𝑦 ∩ (𝑠 ∩ π‘Œ)) β‰  βˆ…))
6457, 60, 63ralxfr2d 5408 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ… ↔ βˆ€π‘  ∈ 𝐹 (𝑦 ∩ (𝑠 ∩ π‘Œ)) β‰  βˆ…))
65 ineq1 4205 . . . . . . . . . . . 12 (𝑦 = (𝑒 ∩ π‘Œ) β†’ (𝑦 ∩ (𝑠 ∩ π‘Œ)) = ((𝑒 ∩ π‘Œ) ∩ (𝑠 ∩ π‘Œ)))
66 inindir 4227 . . . . . . . . . . . 12 ((𝑒 ∩ 𝑠) ∩ π‘Œ) = ((𝑒 ∩ π‘Œ) ∩ (𝑠 ∩ π‘Œ))
6765, 66eqtr4di 2790 . . . . . . . . . . 11 (𝑦 = (𝑒 ∩ π‘Œ) β†’ (𝑦 ∩ (𝑠 ∩ π‘Œ)) = ((𝑒 ∩ 𝑠) ∩ π‘Œ))
6867neeq1d 3000 . . . . . . . . . 10 (𝑦 = (𝑒 ∩ π‘Œ) β†’ ((𝑦 ∩ (𝑠 ∩ π‘Œ)) β‰  βˆ… ↔ ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
6968ralbidv 3177 . . . . . . . . 9 (𝑦 = (𝑒 ∩ π‘Œ) β†’ (βˆ€π‘  ∈ 𝐹 (𝑦 ∩ (𝑠 ∩ π‘Œ)) β‰  βˆ… ↔ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
7064, 69sylan9bb 510 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑦 = (𝑒 ∩ π‘Œ)) β†’ (βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ… ↔ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…))
7154, 70imbi12d 344 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) ∧ 𝑦 = (𝑒 ∩ π‘Œ)) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ…) ↔ (π‘₯ ∈ 𝑒 β†’ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…)))
7246, 49, 71ralxfr2d 5408 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (βˆ€π‘¦ ∈ (𝐽 β†Ύt π‘Œ)(π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ…) ↔ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆ€π‘  ∈ 𝐹 ((𝑒 ∩ 𝑠) ∩ π‘Œ) β‰  βˆ…)))
731adantr 481 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
7411adantr 481 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ 𝐹 ∈ (Filβ€˜π‘‹))
753sselda 3982 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ π‘₯ ∈ 𝑋)
76 fclsopn 23525 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (π‘₯ ∈ (𝐽 fClus 𝐹) ↔ (π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…))))
7776baibd 540 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯ ∈ (𝐽 fClus 𝐹) ↔ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…)))
7873, 74, 75, 77syl21anc 836 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (π‘₯ ∈ (𝐽 fClus 𝐹) ↔ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆ€π‘‘ ∈ 𝐹 (𝑒 ∩ 𝑑) β‰  βˆ…)))
7943, 72, 783bitr4d 310 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) ∧ π‘₯ ∈ π‘Œ) β†’ (βˆ€π‘¦ ∈ (𝐽 β†Ύt π‘Œ)(π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ…) ↔ π‘₯ ∈ (𝐽 fClus 𝐹)))
8079pm5.32da 579 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ ((π‘₯ ∈ π‘Œ ∧ βˆ€π‘¦ ∈ (𝐽 β†Ύt π‘Œ)(π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ ∈ (𝐹 β†Ύt π‘Œ)(𝑦 ∩ 𝑧) β‰  βˆ…)) ↔ (π‘₯ ∈ π‘Œ ∧ π‘₯ ∈ (𝐽 fClus 𝐹))))
8116, 80bitrd 278 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (π‘₯ ∈ ((𝐽 β†Ύt π‘Œ) fClus (𝐹 β†Ύt π‘Œ)) ↔ (π‘₯ ∈ π‘Œ ∧ π‘₯ ∈ (𝐽 fClus 𝐹))))
82 elin 3964 . . . 4 (π‘₯ ∈ ((𝐽 fClus 𝐹) ∩ π‘Œ) ↔ (π‘₯ ∈ (𝐽 fClus 𝐹) ∧ π‘₯ ∈ π‘Œ))
8382biancomi 463 . . 3 (π‘₯ ∈ ((𝐽 fClus 𝐹) ∩ π‘Œ) ↔ (π‘₯ ∈ π‘Œ ∧ π‘₯ ∈ (𝐽 fClus 𝐹)))
8481, 83bitr4di 288 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ (π‘₯ ∈ ((𝐽 β†Ύt π‘Œ) fClus (𝐹 β†Ύt π‘Œ)) ↔ π‘₯ ∈ ((𝐽 fClus 𝐹) ∩ π‘Œ)))
8584eqrdv 2730 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ π‘Œ ∈ 𝐹) β†’ ((𝐽 β†Ύt π‘Œ) fClus (𝐹 β†Ύt π‘Œ)) = ((𝐽 fClus 𝐹) ∩ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3945   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  β€˜cfv 6543  (class class class)co 7411   β†Ύt crest 17368  fBascfbas 20938  TopOnctopon 22419  Filcfil 23356   fClus cfcls 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-en 8942  df-fin 8945  df-fi 9408  df-rest 17370  df-topgen 17391  df-fbas 20947  df-fg 20948  df-top 22403  df-topon 22420  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-fil 23357  df-fcls 23452
This theorem is referenced by:  relcmpcmet  24842
  Copyright terms: Public domain W3C validator