MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsrest Structured version   Visualization version   GIF version

Theorem fclsrest 23509
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fclsrest ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fClus (𝐹t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌))

Proof of Theorem fclsrest
Dummy variables 𝑠 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐽 ∈ (TopOn‘𝑋))
2 filelss 23337 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
323adant1 1131 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
4 resttopon 22646 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
51, 3, 4syl2anc 585 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
6 filfbas 23333 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
763ad2ant2 1135 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
8 simp3 1139 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
9 fbncp 23324 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
107, 8, 9syl2anc 585 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
11 simp2 1138 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
12 trfil3 23373 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1311, 3, 12syl2anc 585 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1410, 13mpbird 257 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
15 fclsopn 23499 . . . . 5 (((𝐽t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅))))
165, 14, 15syl2anc 585 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅))))
17 in32 4219 . . . . . . . . . . . . . 14 ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ 𝑠)
18 ineq2 4204 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝑢𝑌) ∩ 𝑠) = ((𝑢𝑌) ∩ 𝑡))
1917, 18eqtrid 2785 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ 𝑡))
2019neeq1d 3001 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (((𝑢𝑠) ∩ 𝑌) ≠ ∅ ↔ ((𝑢𝑌) ∩ 𝑡) ≠ ∅))
2120rspccv 3608 . . . . . . . . . . 11 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → (𝑡𝐹 → ((𝑢𝑌) ∩ 𝑡) ≠ ∅))
22 inss1 4226 . . . . . . . . . . . . 13 (𝑢𝑌) ⊆ 𝑢
23 ssrin 4231 . . . . . . . . . . . . 13 ((𝑢𝑌) ⊆ 𝑢 → ((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡))
2422, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡)
25 ssn0 4398 . . . . . . . . . . . 12 ((((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡) ∧ ((𝑢𝑌) ∩ 𝑡) ≠ ∅) → (𝑢𝑡) ≠ ∅)
2624, 25mpan 689 . . . . . . . . . . 11 (((𝑢𝑌) ∩ 𝑡) ≠ ∅ → (𝑢𝑡) ≠ ∅)
2721, 26syl6 35 . . . . . . . . . 10 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → (𝑡𝐹 → (𝑢𝑡) ≠ ∅))
2827ralrimiv 3146 . . . . . . . . 9 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)
2911ad3antrrr 729 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝐹 ∈ (Fil‘𝑋))
30 simpr 486 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝑠𝐹)
318ad3antrrr 729 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝑌𝐹)
32 filin 23339 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹𝑌𝐹) → (𝑠𝑌) ∈ 𝐹)
3329, 30, 31, 32syl3anc 1372 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ 𝐹)
34 ineq2 4204 . . . . . . . . . . . . . 14 (𝑡 = (𝑠𝑌) → (𝑢𝑡) = (𝑢 ∩ (𝑠𝑌)))
35 inass 4217 . . . . . . . . . . . . . 14 ((𝑢𝑠) ∩ 𝑌) = (𝑢 ∩ (𝑠𝑌))
3634, 35eqtr4di 2791 . . . . . . . . . . . . 13 (𝑡 = (𝑠𝑌) → (𝑢𝑡) = ((𝑢𝑠) ∩ 𝑌))
3736neeq1d 3001 . . . . . . . . . . . 12 (𝑡 = (𝑠𝑌) → ((𝑢𝑡) ≠ ∅ ↔ ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
3837rspcv 3607 . . . . . . . . . . 11 ((𝑠𝑌) ∈ 𝐹 → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
3933, 38syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
4039ralrimdva 3155 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
4128, 40impbid2 225 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ ↔ ∀𝑡𝐹 (𝑢𝑡) ≠ ∅))
4241imbi2d 341 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → ((𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅) ↔ (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
4342ralbidva 3176 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑢𝐽 (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
44 vex 3479 . . . . . . . . 9 𝑢 ∈ V
4544inex1 5315 . . . . . . . 8 (𝑢𝑌) ∈ V
4645a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ V)
47 elrest 17368 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
48473adant2 1132 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
4948adantr 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
50 eleq2 2823 . . . . . . . . 9 (𝑦 = (𝑢𝑌) → (𝑥𝑦𝑥 ∈ (𝑢𝑌)))
51 elin 3962 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑌) ↔ (𝑥𝑢𝑥𝑌))
5251rbaib 540 . . . . . . . . . 10 (𝑥𝑌 → (𝑥 ∈ (𝑢𝑌) ↔ 𝑥𝑢))
5352adantl 483 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝑢𝑌) ↔ 𝑥𝑢))
5450, 53sylan9bbr 512 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → (𝑥𝑦𝑥𝑢))
55 vex 3479 . . . . . . . . . . . 12 𝑠 ∈ V
5655inex1 5315 . . . . . . . . . . 11 (𝑠𝑌) ∈ V
5756a1i 11 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ V)
58 elrest 17368 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
59583adant1 1131 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
6059adantr 482 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
61 ineq2 4204 . . . . . . . . . . . 12 (𝑧 = (𝑠𝑌) → (𝑦𝑧) = (𝑦 ∩ (𝑠𝑌)))
6261adantl 483 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧 = (𝑠𝑌)) → (𝑦𝑧) = (𝑦 ∩ (𝑠𝑌)))
6362neeq1d 3001 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧 = (𝑠𝑌)) → ((𝑦𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑠𝑌)) ≠ ∅))
6457, 60, 63ralxfr2d 5406 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅ ↔ ∀𝑠𝐹 (𝑦 ∩ (𝑠𝑌)) ≠ ∅))
65 ineq1 4203 . . . . . . . . . . . 12 (𝑦 = (𝑢𝑌) → (𝑦 ∩ (𝑠𝑌)) = ((𝑢𝑌) ∩ (𝑠𝑌)))
66 inindir 4225 . . . . . . . . . . . 12 ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ (𝑠𝑌))
6765, 66eqtr4di 2791 . . . . . . . . . . 11 (𝑦 = (𝑢𝑌) → (𝑦 ∩ (𝑠𝑌)) = ((𝑢𝑠) ∩ 𝑌))
6867neeq1d 3001 . . . . . . . . . 10 (𝑦 = (𝑢𝑌) → ((𝑦 ∩ (𝑠𝑌)) ≠ ∅ ↔ ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
6968ralbidv 3178 . . . . . . . . 9 (𝑦 = (𝑢𝑌) → (∀𝑠𝐹 (𝑦 ∩ (𝑠𝑌)) ≠ ∅ ↔ ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
7064, 69sylan9bb 511 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → (∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅ ↔ ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
7154, 70imbi12d 345 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → ((𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅)))
7246, 49, 71ralxfr2d 5406 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅)))
731adantr 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐽 ∈ (TopOn‘𝑋))
7411adantr 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐹 ∈ (Fil‘𝑋))
753sselda 3980 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑥𝑋)
76 fclsopn 23499 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅))))
7776baibd 541 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
7873, 74, 75, 77syl21anc 837 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
7943, 72, 783bitr4d 311 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ 𝑥 ∈ (𝐽 fClus 𝐹)))
8079pm5.32da 580 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹))))
8116, 80bitrd 279 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹))))
82 elin 3962 . . . 4 (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝑌))
8382biancomi 464 . . 3 (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹)))
8481, 83bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌)))
8584eqrdv 2731 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fClus (𝐹t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  cdif 3943  cin 3945  wss 3946  c0 4320  cfv 6539  (class class class)co 7403  t crest 17361  fBascfbas 20916  TopOnctopon 22393  Filcfil 23330   fClus cfcls 23421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-en 8935  df-fin 8938  df-fi 9401  df-rest 17363  df-topgen 17384  df-fbas 20925  df-fg 20926  df-top 22377  df-topon 22394  df-bases 22430  df-cld 22504  df-ntr 22505  df-cls 22506  df-fil 23331  df-fcls 23426
This theorem is referenced by:  relcmpcmet  24816
  Copyright terms: Public domain W3C validator