Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | filelss 22911 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
3 | 2 | 3adant1 1128 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
4 | | resttopon 22220 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
5 | 1, 3, 4 | syl2anc 583 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
6 | | filfbas 22907 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
7 | 6 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
8 | | simp3 1136 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
9 | | fbncp 22898 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
10 | 7, 8, 9 | syl2anc 583 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
11 | | simp2 1135 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
12 | | trfil3 22947 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
13 | 11, 3, 12 | syl2anc 583 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
14 | 10, 13 | mpbird 256 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) |
15 | | fclsopn 23073 |
. . . . 5
⊢ (((𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅)))) |
16 | 5, 14, 15 | syl2anc 583 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅)))) |
17 | | in32 4152 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑠) ∩ 𝑌) = ((𝑢 ∩ 𝑌) ∩ 𝑠) |
18 | | ineq2 4137 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → ((𝑢 ∩ 𝑌) ∩ 𝑠) = ((𝑢 ∩ 𝑌) ∩ 𝑡)) |
19 | 17, 18 | eqtrid 2790 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝑢 ∩ 𝑠) ∩ 𝑌) = ((𝑢 ∩ 𝑌) ∩ 𝑡)) |
20 | 19 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ ↔ ((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅)) |
21 | 20 | rspccv 3549 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ → (𝑡 ∈ 𝐹 → ((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅)) |
22 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑢 |
23 | | ssrin 4164 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑌) ⊆ 𝑢 → ((𝑢 ∩ 𝑌) ∩ 𝑡) ⊆ (𝑢 ∩ 𝑡)) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑌) ∩ 𝑡) ⊆ (𝑢 ∩ 𝑡) |
25 | | ssn0 4331 |
. . . . . . . . . . . 12
⊢ ((((𝑢 ∩ 𝑌) ∩ 𝑡) ⊆ (𝑢 ∩ 𝑡) ∧ ((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅) → (𝑢 ∩ 𝑡) ≠ ∅) |
26 | 24, 25 | mpan 686 |
. . . . . . . . . . 11
⊢ (((𝑢 ∩ 𝑌) ∩ 𝑡) ≠ ∅ → (𝑢 ∩ 𝑡) ≠ ∅) |
27 | 21, 26 | syl6 35 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ → (𝑡 ∈ 𝐹 → (𝑢 ∩ 𝑡) ≠ ∅)) |
28 | 27 | ralrimiv 3106 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅) |
29 | 11 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
30 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → 𝑠 ∈ 𝐹) |
31 | 8 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
32 | | filin 22913 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ 𝐹) |
33 | 29, 30, 31, 32 | syl3anc 1369 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ 𝐹) |
34 | | ineq2 4137 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑠 ∩ 𝑌) → (𝑢 ∩ 𝑡) = (𝑢 ∩ (𝑠 ∩ 𝑌))) |
35 | | inass 4150 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑠) ∩ 𝑌) = (𝑢 ∩ (𝑠 ∩ 𝑌)) |
36 | 34, 35 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑠 ∩ 𝑌) → (𝑢 ∩ 𝑡) = ((𝑢 ∩ 𝑠) ∩ 𝑌)) |
37 | 36 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑠 ∩ 𝑌) → ((𝑢 ∩ 𝑡) ≠ ∅ ↔ ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
38 | 37 | rspcv 3547 |
. . . . . . . . . . 11
⊢ ((𝑠 ∩ 𝑌) ∈ 𝐹 → (∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅ → ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
39 | 33, 38 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) ∧ 𝑠 ∈ 𝐹) → (∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅ → ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
40 | 39 | ralrimdva 3112 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅ → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
41 | 28, 40 | impbid2 225 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅ ↔ ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅)) |
42 | 41 | imbi2d 340 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅) ↔ (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
43 | 42 | ralbidva 3119 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
44 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
45 | 44 | inex1 5236 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝑌) ∈ V |
46 | 45 | a1i 11 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ V) |
47 | | elrest 17055 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑦 = (𝑢 ∩ 𝑌))) |
48 | 47 | 3adant2 1129 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑦 = (𝑢 ∩ 𝑌))) |
49 | 48 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑦 = (𝑢 ∩ 𝑌))) |
50 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑢 ∩ 𝑌))) |
51 | | elin 3899 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑢 ∩ 𝑌) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑌)) |
52 | 51 | rbaib 538 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑌 → (𝑥 ∈ (𝑢 ∩ 𝑌) ↔ 𝑥 ∈ 𝑢)) |
53 | 52 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝑢 ∩ 𝑌) ↔ 𝑥 ∈ 𝑢)) |
54 | 50, 53 | sylan9bbr 510 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑢 ∩ 𝑌)) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑢)) |
55 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑠 ∈ V |
56 | 55 | inex1 5236 |
. . . . . . . . . . 11
⊢ (𝑠 ∩ 𝑌) ∈ V |
57 | 56 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ V) |
58 | | elrest 17055 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑧 ∈ (𝐹 ↾t 𝑌) ↔ ∃𝑠 ∈ 𝐹 𝑧 = (𝑠 ∩ 𝑌))) |
59 | 58 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑧 ∈ (𝐹 ↾t 𝑌) ↔ ∃𝑠 ∈ 𝐹 𝑧 = (𝑠 ∩ 𝑌))) |
60 | 59 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑧 ∈ (𝐹 ↾t 𝑌) ↔ ∃𝑠 ∈ 𝐹 𝑧 = (𝑠 ∩ 𝑌))) |
61 | | ineq2 4137 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑠 ∩ 𝑌) → (𝑦 ∩ 𝑧) = (𝑦 ∩ (𝑠 ∩ 𝑌))) |
62 | 61 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 = (𝑠 ∩ 𝑌)) → (𝑦 ∩ 𝑧) = (𝑦 ∩ (𝑠 ∩ 𝑌))) |
63 | 62 | neeq1d 3002 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 = (𝑠 ∩ 𝑌)) → ((𝑦 ∩ 𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅)) |
64 | 57, 60, 63 | ralxfr2d 5328 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅)) |
65 | | ineq1 4136 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (𝑦 ∩ (𝑠 ∩ 𝑌)) = ((𝑢 ∩ 𝑌) ∩ (𝑠 ∩ 𝑌))) |
66 | | inindir 4158 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑠) ∩ 𝑌) = ((𝑢 ∩ 𝑌) ∩ (𝑠 ∩ 𝑌)) |
67 | 65, 66 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (𝑦 ∩ (𝑠 ∩ 𝑌)) = ((𝑢 ∩ 𝑠) ∩ 𝑌)) |
68 | 67 | neeq1d 3002 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑢 ∩ 𝑌) → ((𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅ ↔ ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
69 | 68 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑦 = (𝑢 ∩ 𝑌) → (∀𝑠 ∈ 𝐹 (𝑦 ∩ (𝑠 ∩ 𝑌)) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
70 | 64, 69 | sylan9bb 509 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑢 ∩ 𝑌)) → (∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅)) |
71 | 54, 70 | imbi12d 344 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑢 ∩ 𝑌)) → ((𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅) ↔ (𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅))) |
72 | 46, 49, 71 | ralxfr2d 5328 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑠 ∈ 𝐹 ((𝑢 ∩ 𝑠) ∩ 𝑌) ≠ ∅))) |
73 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
74 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐹 ∈ (Fil‘𝑋)) |
75 | 3 | sselda 3917 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
76 | | fclsopn 23073 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅)))) |
77 | 76 | baibd 539 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
78 | 73, 74, 75, 77 | syl21anc 834 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∀𝑡 ∈ 𝐹 (𝑢 ∩ 𝑡) ≠ ∅))) |
79 | 43, 72, 78 | 3bitr4d 310 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅) ↔ 𝑥 ∈ (𝐽 fClus 𝐹))) |
80 | 79 | pm5.32da 578 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → ∀𝑧 ∈ (𝐹 ↾t 𝑌)(𝑦 ∩ 𝑧) ≠ ∅)) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fClus 𝐹)))) |
81 | 16, 80 | bitrd 278 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fClus 𝐹)))) |
82 | | elin 3899 |
. . . 4
⊢ (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fClus 𝐹) ∧ 𝑥 ∈ 𝑌)) |
83 | 82 | biancomi 462 |
. . 3
⊢ (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fClus 𝐹))) |
84 | 81, 83 | bitr4di 288 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌))) |
85 | 84 | eqrdv 2736 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌)) |