Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgsubmefmnd | Structured version Visualization version GIF version |
Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 18-Feb-2024.) |
Ref | Expression |
---|---|
symgsubmefmnd.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
symgsubmefmnd.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgsubmefmnd.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
symgsubmefmnd | ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgsubmefmnd.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symgsubmefmnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbas 18567 | . 2 ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
4 | inab 4204 | . . . 4 ⊢ ({𝑓 ∣ 𝑓:𝐴–1-1→𝐴} ∩ {𝑓 ∣ 𝑓:𝐴–onto→𝐴}) = {𝑓 ∣ (𝑓:𝐴–1-1→𝐴 ∧ 𝑓:𝐴–onto→𝐴)} | |
5 | df-f1o 6343 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐴 ↔ (𝑓:𝐴–1-1→𝐴 ∧ 𝑓:𝐴–onto→𝐴)) | |
6 | 5 | bicomi 227 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐴 ∧ 𝑓:𝐴–onto→𝐴) ↔ 𝑓:𝐴–1-1-onto→𝐴) |
7 | 6 | abbii 2824 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴–1-1→𝐴 ∧ 𝑓:𝐴–onto→𝐴)} = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
8 | 4, 7 | eqtr2i 2783 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} = ({𝑓 ∣ 𝑓:𝐴–1-1→𝐴} ∩ {𝑓 ∣ 𝑓:𝐴–onto→𝐴}) |
9 | symgsubmefmnd.m | . . . . 5 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
10 | 9 | injsubmefmnd 18129 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐴} ∈ (SubMnd‘𝑀)) |
11 | 9 | sursubmefmnd 18128 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀)) |
12 | insubm 18050 | . . . 4 ⊢ (({𝑓 ∣ 𝑓:𝐴–1-1→𝐴} ∈ (SubMnd‘𝑀) ∧ {𝑓 ∣ 𝑓:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀)) → ({𝑓 ∣ 𝑓:𝐴–1-1→𝐴} ∩ {𝑓 ∣ 𝑓:𝐴–onto→𝐴}) ∈ (SubMnd‘𝑀)) | |
13 | 10, 11, 12 | syl2anc 588 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝑓 ∣ 𝑓:𝐴–1-1→𝐴} ∩ {𝑓 ∣ 𝑓:𝐴–onto→𝐴}) ∈ (SubMnd‘𝑀)) |
14 | 8, 13 | eqeltrid 2857 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ (SubMnd‘𝑀)) |
15 | 3, 14 | eqeltrid 2857 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {cab 2736 ∩ cin 3858 –1-1→wf1 6333 –onto→wfo 6334 –1-1-onto→wf1o 6335 ‘cfv 6336 Basecbs 16542 SubMndcsubmnd 18022 EndoFMndcefmnd 18100 SymGrpcsymg 18563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-tset 16643 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-submnd 18024 df-efmnd 18101 df-symg 18564 |
This theorem is referenced by: symgid 18597 symgtgp 22807 |
Copyright terms: Public domain | W3C validator |