Step | Hyp | Ref
| Expression |
1 | | smueq.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆
ℕ0) |
3 | | smueq.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
5 | | smueq.p |
. . . . . . 7
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
6 | | elfzouz 13320 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈
(ℤ≥‘0)) |
7 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈
(ℤ≥‘0)) |
8 | | nn0uz 12549 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
9 | 7, 8 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
10 | 9 | nn0zd 12353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ) |
11 | 10 | peano2zd 12358 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ ℤ) |
12 | | smueq.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
14 | 13 | nn0zd 12353 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
15 | | elfzolt2 13325 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁) |
16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < 𝑁) |
17 | | nn0ltp1le 12308 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁)) |
18 | 9, 13, 17 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁)) |
19 | 16, 18 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ≤ 𝑁) |
20 | | eluz2 12517 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘(𝑘 + 1)) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑁)) |
21 | 11, 14, 19, 20 | syl3anbrc 1341 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ (ℤ≥‘(𝑘 + 1))) |
22 | 2, 4, 5, 9, 21 | smuval2 16117 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘𝑁))) |
23 | 12, 8 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
24 | | eluzfz2b 13194 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘0) ↔ 𝑁 ∈ (0...𝑁)) |
25 | 23, 24 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
26 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → (𝑃‘𝑥) = (𝑃‘0)) |
27 | 26 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘0) ∩ (0..^𝑁))) |
28 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → (𝑄‘𝑥) = (𝑄‘0)) |
29 | 28 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))) |
30 | 27, 29 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))) |
31 | 30 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))) |
32 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑃‘𝑥) = (𝑃‘𝑖)) |
33 | 32 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘𝑖) ∩ (0..^𝑁))) |
34 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑄‘𝑥) = (𝑄‘𝑖)) |
35 | 34 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁))) |
36 | 33, 35 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)))) |
37 | 36 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁))))) |
38 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑖 + 1) → (𝑃‘𝑥) = (𝑃‘(𝑖 + 1))) |
39 | 38 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑖 + 1) → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁))) |
40 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑖 + 1) → (𝑄‘𝑥) = (𝑄‘(𝑖 + 1))) |
41 | 40 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑖 + 1) → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))) |
42 | 39, 41 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑖 + 1) → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))) |
43 | 42 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑖 + 1) → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))) |
44 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑁 → (𝑃‘𝑥) = (𝑃‘𝑁)) |
45 | 44 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑁 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘𝑁) ∩ (0..^𝑁))) |
46 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑁 → (𝑄‘𝑥) = (𝑄‘𝑁)) |
47 | 46 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑁 → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))) |
48 | 45, 47 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁)))) |
49 | 48 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))))) |
50 | 1, 3, 5 | smup0 16114 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃‘0) = ∅) |
51 | | inss1 4159 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵 |
52 | 51, 3 | sstrid 3928 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
53 | | smueq.q |
. . . . . . . . . . . . . . 15
⊢ 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
54 | 1, 52, 53 | smup0 16114 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) = ∅) |
55 | 50, 54 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃‘0) = (𝑄‘0)) |
56 | 55 | ineq1d 4142 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))) |
57 | 56 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))) |
58 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → (((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) = (((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))) |
59 | 58 | ineq1d 4142 |
. . . . . . . . . . . . . 14
⊢ (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
60 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝐴 ⊆
ℕ0) |
61 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
62 | | elfzonn0 13360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
64 | 60, 61, 5, 63 | smupp1 16115 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑃‘(𝑖 + 1)) = ((𝑃‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)})) |
65 | 64 | ineq1d 4142 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑃‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)}) ∩ (0..^𝑁))) |
66 | 1, 3, 5 | smupf 16113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃:ℕ0⟶𝒫
ℕ0) |
67 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:ℕ0⟶𝒫
ℕ0 ∧ 𝑖
∈ ℕ0) → (𝑃‘𝑖) ∈ 𝒫
ℕ0) |
68 | 66, 62, 67 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑃‘𝑖) ∈ 𝒫
ℕ0) |
69 | 68 | elpwid 4541 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑃‘𝑖) ⊆
ℕ0) |
70 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ⊆
ℕ0 |
71 | 70 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ⊆
ℕ0) |
72 | 12 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
73 | 69, 71, 72 | sadeq 16107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑃‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)) = ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
74 | 65, 73 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
75 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
76 | 60, 75, 53, 63 | smupp1 16115 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑄‘(𝑖 + 1)) = ((𝑄‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))})) |
77 | 76 | ineq1d 4142 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑄‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁))) |
78 | 1, 52, 53 | smupf 16113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑄:ℕ0⟶𝒫
ℕ0) |
79 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑄:ℕ0⟶𝒫
ℕ0 ∧ 𝑖
∈ ℕ0) → (𝑄‘𝑖) ∈ 𝒫
ℕ0) |
80 | 78, 62, 79 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑄‘𝑖) ∈ 𝒫
ℕ0) |
81 | 80 | elpwid 4541 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑄‘𝑖) ⊆
ℕ0) |
82 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆
ℕ0 |
83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆
ℕ0) |
84 | 81, 83, 72 | sadeq 16107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑄‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
85 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (ℕ0
∩ (0..^𝑁)) → 𝑛 ∈ (0..^𝑁)) |
86 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
87 | 86 | sseld 3916 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ 𝐵 → (𝑛 − 𝑖) ∈
ℕ0)) |
88 | | elfzo0 13356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (0..^𝑁) ↔ (𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑛 < 𝑁)) |
89 | 88 | simp2bi 1144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ) |
90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
91 | | elfzonn0 13360 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0) |
92 | 91 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0) |
93 | 92 | nn0red 12224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ) |
94 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
95 | 94 | nn0red 12224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℝ) |
96 | 93, 95 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛 − 𝑖) ∈ ℝ) |
97 | 90 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ) |
98 | 94 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 0 ≤ 𝑖) |
99 | 93, 95 | subge02d 11497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (0 ≤ 𝑖 ↔ (𝑛 − 𝑖) ≤ 𝑛)) |
100 | 98, 99 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛 − 𝑖) ≤ 𝑛) |
101 | | elfzolt2 13325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁) |
103 | 96, 93, 97, 100, 102 | lelttrd 11063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛 − 𝑖) < 𝑁) |
104 | 90, 103 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁)) |
105 | | elfzo0 13356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑛 − 𝑖) ∈ (0..^𝑁) ↔ ((𝑛 − 𝑖) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁)) |
106 | | 3anass 1093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑛 − 𝑖) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁) ↔ ((𝑛 − 𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁))) |
107 | 105, 106 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 − 𝑖) ∈ (0..^𝑁) ↔ ((𝑛 − 𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁))) |
108 | 107 | baib 535 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 − 𝑖) ∈ ℕ0 → ((𝑛 − 𝑖) ∈ (0..^𝑁) ↔ (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁))) |
109 | 104, 108 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ ℕ0 → (𝑛 − 𝑖) ∈ (0..^𝑁))) |
110 | 87, 109 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ 𝐵 → (𝑛 − 𝑖) ∈ (0..^𝑁))) |
111 | 110 | pm4.71rd 562 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ 𝐵 ↔ ((𝑛 − 𝑖) ∈ (0..^𝑁) ∧ (𝑛 − 𝑖) ∈ 𝐵))) |
112 | | ancom 460 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 − 𝑖) ∈ (0..^𝑁) ∧ (𝑛 − 𝑖) ∈ 𝐵) ↔ ((𝑛 − 𝑖) ∈ 𝐵 ∧ (𝑛 − 𝑖) ∈ (0..^𝑁))) |
113 | | elin 3899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ ((𝑛 − 𝑖) ∈ 𝐵 ∧ (𝑛 − 𝑖) ∈ (0..^𝑁))) |
114 | 112, 113 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 − 𝑖) ∈ (0..^𝑁) ∧ (𝑛 − 𝑖) ∈ 𝐵) ↔ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁))) |
115 | 111, 114 | bitr2di 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ (𝑛 − 𝑖) ∈ 𝐵)) |
116 | 115 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵))) |
117 | 85, 116 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^𝑁))) → ((𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵))) |
118 | 117 | rabbidva 3402 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)}) |
119 | | inrab2 4238 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} |
120 | | inrab2 4238 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} |
121 | 118, 119,
120 | 3eqtr4g 2804 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) |
122 | 121 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) = (((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))) |
123 | 122 | ineq1d 4142 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
124 | 77, 84, 123 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
125 | 74, 124 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) ↔ ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
126 | 59, 125 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))) |
127 | 126 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0..^𝑁) → (𝜑 → (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))) |
128 | 127 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁))) → (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))) |
129 | 31, 37, 43, 49, 57, 128 | fzind2 13433 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁)))) |
130 | 25, 129 | mpcom 38 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))) |
131 | 130 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))) |
132 | 131 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)))) |
133 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑃‘𝑁) ∧ 𝑘 ∈ (0..^𝑁))) |
134 | 133 | rbaib 538 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃‘𝑁))) |
135 | 134 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃‘𝑁))) |
136 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑄‘𝑁) ∧ 𝑘 ∈ (0..^𝑁))) |
137 | 136 | rbaib 538 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄‘𝑁))) |
138 | 137 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄‘𝑁))) |
139 | 132, 135,
138 | 3bitr3d 308 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑃‘𝑁) ↔ 𝑘 ∈ (𝑄‘𝑁))) |
140 | 52 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
141 | 2, 140, 53, 13 | smupval 16123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))) |
142 | 141 | eleq2d 2824 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑄‘𝑁) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))) |
143 | 22, 139, 142 | 3bitrd 304 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))) |
144 | 143 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))) |
145 | 144 | pm5.32rd 577 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁)))) |
146 | | elin 3899 |
. . 3
⊢ (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁))) |
147 | | elin 3899 |
. . 3
⊢ (𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁))) |
148 | 145, 146,
147 | 3bitr4g 313 |
. 2
⊢ (𝜑 → (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
149 | 148 | eqrdv 2736 |
1
⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) |