| Step | Hyp | Ref
| Expression |
| 1 | | smueq.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
| 2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆
ℕ0) |
| 3 | | smueq.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
| 5 | | smueq.p |
. . . . . . 7
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
| 6 | | elfzouz 13680 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈
(ℤ≥‘0)) |
| 7 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈
(ℤ≥‘0)) |
| 8 | | nn0uz 12894 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
| 9 | 7, 8 | eleqtrrdi 2845 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
| 10 | 9 | nn0zd 12614 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ) |
| 11 | 10 | peano2zd 12700 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ ℤ) |
| 12 | | smueq.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
| 14 | 13 | nn0zd 12614 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
| 15 | | elfzolt2 13685 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁) |
| 16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < 𝑁) |
| 17 | | nn0ltp1le 12651 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁)) |
| 18 | 9, 13, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁)) |
| 19 | 16, 18 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ≤ 𝑁) |
| 20 | | eluz2 12858 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘(𝑘 + 1)) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑁)) |
| 21 | 11, 14, 19, 20 | syl3anbrc 1344 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ (ℤ≥‘(𝑘 + 1))) |
| 22 | 2, 4, 5, 9, 21 | smuval2 16501 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘𝑁))) |
| 23 | 12, 8 | eleqtrdi 2844 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 24 | | eluzfz2b 13550 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘0) ↔ 𝑁 ∈ (0...𝑁)) |
| 25 | 23, 24 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 26 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → (𝑃‘𝑥) = (𝑃‘0)) |
| 27 | 26 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘0) ∩ (0..^𝑁))) |
| 28 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → (𝑄‘𝑥) = (𝑄‘0)) |
| 29 | 28 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))) |
| 30 | 27, 29 | eqeq12d 2751 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))) |
| 31 | 30 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))) |
| 32 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑃‘𝑥) = (𝑃‘𝑖)) |
| 33 | 32 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘𝑖) ∩ (0..^𝑁))) |
| 34 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑄‘𝑥) = (𝑄‘𝑖)) |
| 35 | 34 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁))) |
| 36 | 33, 35 | eqeq12d 2751 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)))) |
| 37 | 36 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁))))) |
| 38 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑖 + 1) → (𝑃‘𝑥) = (𝑃‘(𝑖 + 1))) |
| 39 | 38 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑖 + 1) → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁))) |
| 40 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑖 + 1) → (𝑄‘𝑥) = (𝑄‘(𝑖 + 1))) |
| 41 | 40 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑖 + 1) → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))) |
| 42 | 39, 41 | eqeq12d 2751 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑖 + 1) → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))) |
| 43 | 42 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑖 + 1) → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))) |
| 44 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑁 → (𝑃‘𝑥) = (𝑃‘𝑁)) |
| 45 | 44 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑁 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑃‘𝑁) ∩ (0..^𝑁))) |
| 46 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑁 → (𝑄‘𝑥) = (𝑄‘𝑁)) |
| 47 | 46 | ineq1d 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑁 → ((𝑄‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))) |
| 48 | 45, 47 | eqeq12d 2751 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → (((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁)))) |
| 49 | 48 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → ((𝜑 → ((𝑃‘𝑥) ∩ (0..^𝑁)) = ((𝑄‘𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))))) |
| 50 | 1, 3, 5 | smup0 16498 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃‘0) = ∅) |
| 51 | | inss1 4212 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵 |
| 52 | 51, 3 | sstrid 3970 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
| 53 | | smueq.q |
. . . . . . . . . . . . . . 15
⊢ 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
| 54 | 1, 52, 53 | smup0 16498 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) = ∅) |
| 55 | 50, 54 | eqtr4d 2773 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃‘0) = (𝑄‘0)) |
| 56 | 55 | ineq1d 4194 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))) |
| 57 | 56 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))) |
| 58 | | oveq1 7412 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → (((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) = (((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))) |
| 59 | 58 | ineq1d 4194 |
. . . . . . . . . . . . . 14
⊢ (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 60 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝐴 ⊆
ℕ0) |
| 61 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
| 62 | | elfzonn0 13724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
| 64 | 60, 61, 5, 63 | smupp1 16499 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑃‘(𝑖 + 1)) = ((𝑃‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)})) |
| 65 | 64 | ineq1d 4194 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑃‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)}) ∩ (0..^𝑁))) |
| 66 | 1, 3, 5 | smupf 16497 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃:ℕ0⟶𝒫
ℕ0) |
| 67 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:ℕ0⟶𝒫
ℕ0 ∧ 𝑖
∈ ℕ0) → (𝑃‘𝑖) ∈ 𝒫
ℕ0) |
| 68 | 66, 62, 67 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑃‘𝑖) ∈ 𝒫
ℕ0) |
| 69 | 68 | elpwid 4584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑃‘𝑖) ⊆
ℕ0) |
| 70 | | ssrab2 4055 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ⊆
ℕ0 |
| 71 | 70 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ⊆
ℕ0) |
| 72 | 12 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
| 73 | 69, 71, 72 | sadeq 16491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑃‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)) = ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 74 | 65, 73 | eqtrd 2770 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 75 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
| 76 | 60, 75, 53, 63 | smupp1 16499 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑄‘(𝑖 + 1)) = ((𝑄‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))})) |
| 77 | 76 | ineq1d 4194 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑄‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁))) |
| 78 | 1, 52, 53 | smupf 16497 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑄:ℕ0⟶𝒫
ℕ0) |
| 79 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑄:ℕ0⟶𝒫
ℕ0 ∧ 𝑖
∈ ℕ0) → (𝑄‘𝑖) ∈ 𝒫
ℕ0) |
| 80 | 78, 62, 79 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑄‘𝑖) ∈ 𝒫
ℕ0) |
| 81 | 80 | elpwid 4584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑄‘𝑖) ⊆
ℕ0) |
| 82 | | ssrab2 4055 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆
ℕ0 |
| 83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆
ℕ0) |
| 84 | 81, 83, 72 | sadeq 16491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑄‘𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 85 | | elinel2 4177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (ℕ0
∩ (0..^𝑁)) → 𝑛 ∈ (0..^𝑁)) |
| 86 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
| 87 | 86 | sseld 3957 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ 𝐵 → (𝑛 − 𝑖) ∈
ℕ0)) |
| 88 | | elfzo0 13717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (0..^𝑁) ↔ (𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑛 < 𝑁)) |
| 89 | 88 | simp2bi 1146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ) |
| 90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
| 91 | | elfzonn0 13724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0) |
| 93 | 92 | nn0red 12563 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ) |
| 94 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
| 95 | 94 | nn0red 12563 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℝ) |
| 96 | 93, 95 | resubcld 11665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛 − 𝑖) ∈ ℝ) |
| 97 | 90 | nnred 12255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ) |
| 98 | 94 | nn0ge0d 12565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 0 ≤ 𝑖) |
| 99 | 93, 95 | subge02d 11829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (0 ≤ 𝑖 ↔ (𝑛 − 𝑖) ≤ 𝑛)) |
| 100 | 98, 99 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛 − 𝑖) ≤ 𝑛) |
| 101 | | elfzolt2 13685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁) |
| 103 | 96, 93, 97, 100, 102 | lelttrd 11393 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛 − 𝑖) < 𝑁) |
| 104 | 90, 103 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁)) |
| 105 | | elfzo0 13717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑛 − 𝑖) ∈ (0..^𝑁) ↔ ((𝑛 − 𝑖) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁)) |
| 106 | | 3anass 1094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑛 − 𝑖) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁) ↔ ((𝑛 − 𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁))) |
| 107 | 105, 106 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 − 𝑖) ∈ (0..^𝑁) ↔ ((𝑛 − 𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁))) |
| 108 | 107 | baib 535 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 − 𝑖) ∈ ℕ0 → ((𝑛 − 𝑖) ∈ (0..^𝑁) ↔ (𝑁 ∈ ℕ ∧ (𝑛 − 𝑖) < 𝑁))) |
| 109 | 104, 108 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ ℕ0 → (𝑛 − 𝑖) ∈ (0..^𝑁))) |
| 110 | 87, 109 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ 𝐵 → (𝑛 − 𝑖) ∈ (0..^𝑁))) |
| 111 | 110 | pm4.71rd 562 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ 𝐵 ↔ ((𝑛 − 𝑖) ∈ (0..^𝑁) ∧ (𝑛 − 𝑖) ∈ 𝐵))) |
| 112 | | ancom 460 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 − 𝑖) ∈ (0..^𝑁) ∧ (𝑛 − 𝑖) ∈ 𝐵) ↔ ((𝑛 − 𝑖) ∈ 𝐵 ∧ (𝑛 − 𝑖) ∈ (0..^𝑁))) |
| 113 | | elin 3942 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ ((𝑛 − 𝑖) ∈ 𝐵 ∧ (𝑛 − 𝑖) ∈ (0..^𝑁))) |
| 114 | 112, 113 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 − 𝑖) ∈ (0..^𝑁) ∧ (𝑛 − 𝑖) ∈ 𝐵) ↔ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁))) |
| 115 | 111, 114 | bitr2di 288 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ (𝑛 − 𝑖) ∈ 𝐵)) |
| 116 | 115 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵))) |
| 117 | 85, 116 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^𝑁))) → ((𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵))) |
| 118 | 117 | rabbidva 3422 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)}) |
| 119 | | inrab2 4292 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} |
| 120 | | inrab2 4292 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑛 ∈ ℕ0
∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} |
| 121 | 118, 119,
120 | 3eqtr4g 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) |
| 122 | 121 | oveq2d 7421 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) = (((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))) |
| 123 | 122 | ineq1d 4194 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 124 | 77, 84, 123 | 3eqtrd 2774 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))) |
| 125 | 74, 124 | eqeq12d 2751 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) ↔ ((((𝑃‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄‘𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖 ∈ 𝐴 ∧ (𝑛 − 𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 126 | 59, 125 | imbitrrid 246 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))) |
| 127 | 126 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0..^𝑁) → (𝜑 → (((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))) |
| 128 | 127 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑃‘𝑖) ∩ (0..^𝑁)) = ((𝑄‘𝑖) ∩ (0..^𝑁))) → (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))) |
| 129 | 31, 37, 43, 49, 57, 128 | fzind2 13801 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁)))) |
| 130 | 25, 129 | mpcom 38 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))) |
| 131 | 130 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑃‘𝑁) ∩ (0..^𝑁)) = ((𝑄‘𝑁) ∩ (0..^𝑁))) |
| 132 | 131 | eleq2d 2820 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)))) |
| 133 | | elin 3942 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑃‘𝑁) ∧ 𝑘 ∈ (0..^𝑁))) |
| 134 | 133 | rbaib 538 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃‘𝑁))) |
| 135 | 134 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃‘𝑁))) |
| 136 | | elin 3942 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑄‘𝑁) ∧ 𝑘 ∈ (0..^𝑁))) |
| 137 | 136 | rbaib 538 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄‘𝑁))) |
| 138 | 137 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑄‘𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄‘𝑁))) |
| 139 | 132, 135,
138 | 3bitr3d 309 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑃‘𝑁) ↔ 𝑘 ∈ (𝑄‘𝑁))) |
| 140 | 52 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆
ℕ0) |
| 141 | 2, 140, 53, 13 | smupval 16507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))) |
| 142 | 141 | eleq2d 2820 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑄‘𝑁) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))) |
| 143 | 22, 139, 142 | 3bitrd 305 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))) |
| 144 | 143 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))) |
| 145 | 144 | pm5.32rd 578 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁)))) |
| 146 | | elin 3942 |
. . 3
⊢ (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁))) |
| 147 | | elin 3942 |
. . 3
⊢ (𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁))) |
| 148 | 145, 146,
147 | 3bitr4g 314 |
. 2
⊢ (𝜑 → (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) |
| 149 | 148 | eqrdv 2733 |
1
⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) |