MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Visualization version   GIF version

Theorem smueqlem 16536
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a (𝜑𝐴 ⊆ ℕ0)
smueq.b (𝜑𝐵 ⊆ ℕ0)
smueq.n (𝜑𝑁 ∈ ℕ0)
smueq.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smueq.q 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smueqlem (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑄(𝑚,𝑛,𝑝)

Proof of Theorem smueqlem
Dummy variables 𝑘 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8 (𝜑𝐴 ⊆ ℕ0)
21adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3 smueq.b . . . . . . . 8 (𝜑𝐵 ⊆ ℕ0)
43adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
5 smueq.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
6 elfzouz 13720 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
76adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
8 nn0uz 12945 . . . . . . . 8 0 = (ℤ‘0)
97, 8eleqtrrdi 2855 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
109nn0zd 12665 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1110peano2zd 12750 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ ℤ)
12 smueq.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
1413nn0zd 12665 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
15 elfzolt2 13725 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 < 𝑁)
17 nn0ltp1le 12701 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
189, 13, 17syl2anc 583 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
1916, 18mpbid 232 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
20 eluz2 12909 . . . . . . . 8 (𝑁 ∈ (ℤ‘(𝑘 + 1)) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑁))
2111, 14, 19, 20syl3anbrc 1343 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
222, 4, 5, 9, 21smuval2 16528 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑁)))
2312, 8eleqtrdi 2854 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
24 eluzfz2b 13593 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
2523, 24sylib 218 . . . . . . . . . 10 (𝜑𝑁 ∈ (0...𝑁))
26 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
2726ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘0) ∩ (0..^𝑁)))
28 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑄𝑥) = (𝑄‘0))
2928ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
3027, 29eqeq12d 2756 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
3130imbi2d 340 . . . . . . . . . . 11 (𝑥 = 0 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))))
32 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑃𝑥) = (𝑃𝑖))
3332ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑖) ∩ (0..^𝑁)))
34 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑄𝑥) = (𝑄𝑖))
3534ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))
3633, 35eqeq12d 2756 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))))
3736imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑖 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))))
38 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑃𝑥) = (𝑃‘(𝑖 + 1)))
3938ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)))
40 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑄𝑥) = (𝑄‘(𝑖 + 1)))
4140ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))
4239, 41eqeq12d 2756 . . . . . . . . . . . 12 (𝑥 = (𝑖 + 1) → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
4342imbi2d 340 . . . . . . . . . . 11 (𝑥 = (𝑖 + 1) → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
44 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4544ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑁) ∩ (0..^𝑁)))
46 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
4746ineq1d 4240 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
4845, 47eqeq12d 2756 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
4948imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))))
501, 3, 5smup0 16525 . . . . . . . . . . . . . 14 (𝜑 → (𝑃‘0) = ∅)
51 inss1 4258 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5251, 3sstrid 4020 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
53 smueq.q . . . . . . . . . . . . . . 15 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
541, 52, 53smup0 16525 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = ∅)
5550, 54eqtr4d 2783 . . . . . . . . . . . . 13 (𝜑 → (𝑃‘0) = (𝑄‘0))
5655ineq1d 4240 . . . . . . . . . . . 12 (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
5756a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
58 oveq1 7455 . . . . . . . . . . . . . . 15 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
5958ineq1d 4240 . . . . . . . . . . . . . 14 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
601adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
613adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
62 elfzonn0 13761 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
6362adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
6460, 61, 5, 63smupp1 16526 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃‘(𝑖 + 1)) = ((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}))
6564ineq1d 4240 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)))
661, 3, 5smupf 16524 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
67 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . 19 ((𝑃:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6866, 62, 67syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6968elpwid 4631 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ⊆ ℕ0)
70 ssrab2 4103 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0
7170a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0)
7212adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
7369, 71, 72sadeq 16518 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7465, 73eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7552adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
7660, 75, 53, 63smupp1 16526 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄‘(𝑖 + 1)) = ((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}))
7776ineq1d 4240 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)))
781, 52, 53smupf 16524 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:ℕ0⟶𝒫 ℕ0)
79 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . 19 ((𝑄:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8078, 62, 79syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8180elpwid 4631 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ⊆ ℕ0)
82 ssrab2 4103 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0
8382a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0)
8481, 83, 72sadeq 16518 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
85 elinel2 4225 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) → 𝑛 ∈ (0..^𝑁))
8661adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
8786sseld 4007 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ ℕ0))
88 elfzo0 13757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) ↔ (𝑛 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑛 < 𝑁))
8988simp2bi 1146 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ)
91 elfzonn0 13761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9291adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
9392nn0red 12614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ)
9463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
9594nn0red 12614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℝ)
9693, 95resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ∈ ℝ)
9790nnred 12308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ)
9894nn0ge0d 12616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 0 ≤ 𝑖)
9993, 95subge02d 11882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (0 ≤ 𝑖 ↔ (𝑛𝑖) ≤ 𝑛))
10098, 99mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ≤ 𝑛)
101 elfzolt2 13725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
10396, 93, 97, 100, 102lelttrd 11448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) < 𝑁)
10490, 103jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
105 elfzo0 13757 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
106 3anass 1095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
107105, 106bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
108107baib 535 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑖) ∈ ℕ0 → ((𝑛𝑖) ∈ (0..^𝑁) ↔ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
109104, 108syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ ℕ0 → (𝑛𝑖) ∈ (0..^𝑁)))
11087, 109syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ (0..^𝑁)))
111110pm4.71rd 562 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 ↔ ((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵)))
112 ancom 460 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
113 elin 3992 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
114112, 113bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))
115111, 114bitr2di 288 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ (𝑛𝑖) ∈ 𝐵))
116115anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
11785, 116sylan2 592 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^𝑁))) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
118117rabbidva 3450 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)})
119 inrab2 4336 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}
120 inrab2 4336 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}
121118, 119, 1203eqtr4g 2805 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))
122121oveq2d 7464 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
123122ineq1d 4240 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12477, 84, 1233eqtrd 2784 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12574, 124eqeq12d 2756 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) ↔ ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))))
12659, 125imbitrrid 246 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
127126expcom 413 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑁) → (𝜑 → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
128127a2d 29 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))) → (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
12931, 37, 43, 49, 57, 128fzind2 13835 . . . . . . . . . 10 (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
13025, 129mpcom 38 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
131130adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
132131eleq2d 2830 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁))))
133 elin 3992 . . . . . . . . 9 (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑃𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
134133rbaib 538 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
135134adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
136 elin 3992 . . . . . . . . 9 (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑄𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
137136rbaib 538 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
138137adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
139132, 135, 1383bitr3d 309 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑃𝑁) ↔ 𝑘 ∈ (𝑄𝑁)))
14052adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
1412, 140, 53, 13smupval 16534 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑄𝑁) = ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))
142141eleq2d 2830 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑄𝑁) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
14322, 139, 1423bitrd 305 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
144143ex 412 . . . 4 (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))))
145144pm5.32rd 577 . . 3 (𝜑 → ((𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁))))
146 elin 3992 . . 3 (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)))
147 elin 3992 . . 3 (𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁)))
148145, 146, 1473bitr4g 314 . 2 (𝜑 → (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
149148eqrdv 2738 1 (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  cin 3975  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  seqcseq 14052   sadd csad 16466   smul csmu 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-bits 16468  df-sad 16497  df-smu 16522
This theorem is referenced by:  smueq  16537
  Copyright terms: Public domain W3C validator