MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Visualization version   GIF version

Theorem smueqlem 15829
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a (𝜑𝐴 ⊆ ℕ0)
smueq.b (𝜑𝐵 ⊆ ℕ0)
smueq.n (𝜑𝑁 ∈ ℕ0)
smueq.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smueq.q 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smueqlem (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑄(𝑚,𝑛,𝑝)

Proof of Theorem smueqlem
Dummy variables 𝑘 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8 (𝜑𝐴 ⊆ ℕ0)
21adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3 smueq.b . . . . . . . 8 (𝜑𝐵 ⊆ ℕ0)
43adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
5 smueq.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
6 elfzouz 13037 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
76adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
8 nn0uz 12268 . . . . . . . 8 0 = (ℤ‘0)
97, 8eleqtrrdi 2901 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
109nn0zd 12073 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1110peano2zd 12078 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ ℤ)
12 smueq.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1312adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
1413nn0zd 12073 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
15 elfzolt2 13042 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
1615adantl 485 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 < 𝑁)
17 nn0ltp1le 12028 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
189, 13, 17syl2anc 587 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
1916, 18mpbid 235 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
20 eluz2 12237 . . . . . . . 8 (𝑁 ∈ (ℤ‘(𝑘 + 1)) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑁))
2111, 14, 19, 20syl3anbrc 1340 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
222, 4, 5, 9, 21smuval2 15821 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑁)))
2312, 8eleqtrdi 2900 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
24 eluzfz2b 12911 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
2523, 24sylib 221 . . . . . . . . . 10 (𝜑𝑁 ∈ (0...𝑁))
26 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
2726ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘0) ∩ (0..^𝑁)))
28 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑄𝑥) = (𝑄‘0))
2928ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
3027, 29eqeq12d 2814 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
3130imbi2d 344 . . . . . . . . . . 11 (𝑥 = 0 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))))
32 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑃𝑥) = (𝑃𝑖))
3332ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑖) ∩ (0..^𝑁)))
34 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑄𝑥) = (𝑄𝑖))
3534ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))
3633, 35eqeq12d 2814 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))))
3736imbi2d 344 . . . . . . . . . . 11 (𝑥 = 𝑖 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))))
38 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑃𝑥) = (𝑃‘(𝑖 + 1)))
3938ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)))
40 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑄𝑥) = (𝑄‘(𝑖 + 1)))
4140ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))
4239, 41eqeq12d 2814 . . . . . . . . . . . 12 (𝑥 = (𝑖 + 1) → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
4342imbi2d 344 . . . . . . . . . . 11 (𝑥 = (𝑖 + 1) → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
44 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4544ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑁) ∩ (0..^𝑁)))
46 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
4746ineq1d 4138 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
4845, 47eqeq12d 2814 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
4948imbi2d 344 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))))
501, 3, 5smup0 15818 . . . . . . . . . . . . . 14 (𝜑 → (𝑃‘0) = ∅)
51 inss1 4155 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5251, 3sstrid 3926 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
53 smueq.q . . . . . . . . . . . . . . 15 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
541, 52, 53smup0 15818 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = ∅)
5550, 54eqtr4d 2836 . . . . . . . . . . . . 13 (𝜑 → (𝑃‘0) = (𝑄‘0))
5655ineq1d 4138 . . . . . . . . . . . 12 (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
5756a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
58 oveq1 7142 . . . . . . . . . . . . . . 15 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
5958ineq1d 4138 . . . . . . . . . . . . . 14 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
601adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
613adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
62 elfzonn0 13077 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
6362adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
6460, 61, 5, 63smupp1 15819 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃‘(𝑖 + 1)) = ((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}))
6564ineq1d 4138 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)))
661, 3, 5smupf 15817 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
67 ffvelrn 6826 . . . . . . . . . . . . . . . . . . 19 ((𝑃:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6866, 62, 67syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6968elpwid 4508 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ⊆ ℕ0)
70 ssrab2 4007 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0
7170a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0)
7212adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
7369, 71, 72sadeq 15811 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7465, 73eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7552adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
7660, 75, 53, 63smupp1 15819 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄‘(𝑖 + 1)) = ((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}))
7776ineq1d 4138 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)))
781, 52, 53smupf 15817 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:ℕ0⟶𝒫 ℕ0)
79 ffvelrn 6826 . . . . . . . . . . . . . . . . . . 19 ((𝑄:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8078, 62, 79syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8180elpwid 4508 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ⊆ ℕ0)
82 ssrab2 4007 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0
8382a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0)
8481, 83, 72sadeq 15811 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
85 elinel2 4123 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) → 𝑛 ∈ (0..^𝑁))
8661adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
8786sseld 3914 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ ℕ0))
88 elfzo0 13073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) ↔ (𝑛 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑛 < 𝑁))
8988simp2bi 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
9089adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ)
91 elfzonn0 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9291adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
9392nn0red 11944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ)
9463adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
9594nn0red 11944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℝ)
9693, 95resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ∈ ℝ)
9790nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ)
9894nn0ge0d 11946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 0 ≤ 𝑖)
9993, 95subge02d 11221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (0 ≤ 𝑖 ↔ (𝑛𝑖) ≤ 𝑛))
10098, 99mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ≤ 𝑛)
101 elfzolt2 13042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
102101adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
10396, 93, 97, 100, 102lelttrd 10787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) < 𝑁)
10490, 103jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
105 elfzo0 13073 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
106 3anass 1092 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
107105, 106bitri 278 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
108107baib 539 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑖) ∈ ℕ0 → ((𝑛𝑖) ∈ (0..^𝑁) ↔ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
109104, 108syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ ℕ0 → (𝑛𝑖) ∈ (0..^𝑁)))
11087, 109syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ (0..^𝑁)))
111110pm4.71rd 566 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 ↔ ((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵)))
112 ancom 464 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
113 elin 3897 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
114112, 113bitr4i 281 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))
115111, 114syl6rbb 291 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ (𝑛𝑖) ∈ 𝐵))
116115anbi2d 631 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
11785, 116sylan2 595 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^𝑁))) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
118117rabbidva 3425 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)})
119 inrab2 4228 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}
120 inrab2 4228 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}
121118, 119, 1203eqtr4g 2858 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))
122121oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
123122ineq1d 4138 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12477, 84, 1233eqtrd 2837 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12574, 124eqeq12d 2814 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) ↔ ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))))
12659, 125syl5ibr 249 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
127126expcom 417 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑁) → (𝜑 → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
128127a2d 29 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))) → (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
12931, 37, 43, 49, 57, 128fzind2 13150 . . . . . . . . . 10 (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
13025, 129mpcom 38 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
131130adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
132131eleq2d 2875 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁))))
133 elin 3897 . . . . . . . . 9 (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑃𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
134133rbaib 542 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
135134adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
136 elin 3897 . . . . . . . . 9 (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑄𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
137136rbaib 542 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
138137adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
139132, 135, 1383bitr3d 312 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑃𝑁) ↔ 𝑘 ∈ (𝑄𝑁)))
14052adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
1412, 140, 53, 13smupval 15827 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑄𝑁) = ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))
142141eleq2d 2875 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑄𝑁) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
14322, 139, 1423bitrd 308 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
144143ex 416 . . . 4 (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))))
145144pm5.32rd 581 . . 3 (𝜑 → ((𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁))))
146 elin 3897 . . 3 (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)))
147 elin 3897 . . 3 (𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁)))
148145, 146, 1473bitr4g 317 . 2 (𝜑 → (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
149148eqrdv 2796 1 (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028  seqcseq 13364   sadd csad 15759   smul csmu 15760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-had 1595  df-cad 1609  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-bits 15761  df-sad 15790  df-smu 15815
This theorem is referenced by:  smueq  15830
  Copyright terms: Public domain W3C validator