Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspectopn Structured version   Visualization version   GIF version

Theorem rspectopn 33901
Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024.)
Hypotheses
Ref Expression
rspecbas.1 𝑆 = (Spec‘𝑅)
rspectopn.1 𝐼 = (LIdeal‘𝑅)
rspectopn.2 𝑃 = (PrmIdeal‘𝑅)
rspectopn.3 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
Assertion
Ref Expression
rspectopn (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)

Proof of Theorem rspectopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rspecval 33898 . . . . 5 (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
2 rspecbas.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 rspectopn.2 . . . . . 6 𝑃 = (PrmIdeal‘𝑅)
43oveq2i 7363 . . . . 5 ((IDLsrg‘𝑅) ↾s 𝑃) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))
51, 2, 43eqtr4g 2793 . . . 4 (𝑅 ∈ Ring → 𝑆 = ((IDLsrg‘𝑅) ↾s 𝑃))
65fveq2d 6832 . . 3 (𝑅 ∈ Ring → (TopOpen‘𝑆) = (TopOpen‘((IDLsrg‘𝑅) ↾s 𝑃)))
7 eqid 2733 . . . 4 ((IDLsrg‘𝑅) ↾s 𝑃) = ((IDLsrg‘𝑅) ↾s 𝑃)
8 eqid 2733 . . . 4 (TopOpen‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅))
97, 8resstopn 23102 . . 3 ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃) = (TopOpen‘((IDLsrg‘𝑅) ↾s 𝑃))
106, 9eqtr4di 2786 . 2 (𝑅 ∈ Ring → (TopOpen‘𝑆) = ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃))
11 eqid 2733 . . . . 5 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
12 rspectopn.1 . . . . 5 𝐼 = (LIdeal‘𝑅)
13 eqid 2733 . . . . 5 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
1411, 12, 13idlsrgtset 33480 . . . 4 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopSet‘(IDLsrg‘𝑅)))
1512fvexi 6842 . . . . . . . . . . 11 𝐼 ∈ V
1615rabex 5279 . . . . . . . . . 10 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V
1716a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V)
18 simp2 1137 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝑗𝐼)
1911, 12idlsrgbas 33476 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐼 = (Base‘(IDLsrg‘𝑅)))
2019adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → 𝐼 = (Base‘(IDLsrg‘𝑅)))
21203ad2ant1 1133 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝐼 = (Base‘(IDLsrg‘𝑅)))
2218, 21eleqtrd 2835 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝑗 ∈ (Base‘(IDLsrg‘𝑅)))
2322rabssdv 4023 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ⊆ (Base‘(IDLsrg‘𝑅)))
2417, 23elpwd 4555 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)))
2524ralrimiva 3125 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)))
26 eqid 2733 . . . . . . . 8 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
2726rnmptss 7062 . . . . . . 7 (∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)) → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
2825, 27syl 17 . . . . . 6 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
2914, 28eqsstrrd 3966 . . . . 5 (𝑅 ∈ Ring → (TopSet‘(IDLsrg‘𝑅)) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
30 eqid 2733 . . . . . 6 (Base‘(IDLsrg‘𝑅)) = (Base‘(IDLsrg‘𝑅))
31 eqid 2733 . . . . . 6 (TopSet‘(IDLsrg‘𝑅)) = (TopSet‘(IDLsrg‘𝑅))
3230, 31topnid 17341 . . . . 5 ((TopSet‘(IDLsrg‘𝑅)) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)) → (TopSet‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅)))
3329, 32syl 17 . . . 4 (𝑅 ∈ Ring → (TopSet‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅)))
3414, 33eqtrd 2768 . . 3 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopOpen‘(IDLsrg‘𝑅)))
3534oveq1d 7367 . 2 (𝑅 ∈ Ring → (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) = ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃))
3615mptex 7163 . . . . . . 7 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
3736rnex 7846 . . . . . 6 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
383fvexi 6842 . . . . . 6 𝑃 ∈ V
39 elrest 17333 . . . . . 6 ((ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V ∧ 𝑃 ∈ V) → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃)))
4037, 38, 39mp2an 692 . . . . 5 (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃))
4116rgenw 3052 . . . . . . 7 𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V
42 ineq1 4162 . . . . . . . . 9 (𝑦 = {𝑗𝐼 ∣ ¬ 𝑖𝑗} → (𝑦𝑃) = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃))
4342eqeq2d 2744 . . . . . . . 8 (𝑦 = {𝑗𝐼 ∣ ¬ 𝑖𝑗} → (𝑥 = (𝑦𝑃) ↔ 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃)))
4426, 43rexrnmptw 7034 . . . . . . 7 (∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V → (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃)))
4541, 44ax-mp 5 . . . . . 6 (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃))
46 inrab2 4266 . . . . . . . . 9 ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) = {𝑗 ∈ (𝐼𝑃) ∣ ¬ 𝑖𝑗}
47 prmidlssidl 33417 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
4847, 3, 123sstr4g 3984 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃𝐼)
49 sseqin2 4172 . . . . . . . . . . 11 (𝑃𝐼 ↔ (𝐼𝑃) = 𝑃)
5048, 49sylib 218 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐼𝑃) = 𝑃)
5150rabeqdv 3411 . . . . . . . . 9 (𝑅 ∈ Ring → {𝑗 ∈ (𝐼𝑃) ∣ ¬ 𝑖𝑗} = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5246, 51eqtrid 2780 . . . . . . . 8 (𝑅 ∈ Ring → ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5352eqeq2d 2744 . . . . . . 7 (𝑅 ∈ Ring → (𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) ↔ 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5453rexbidv 3157 . . . . . 6 (𝑅 ∈ Ring → (∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5545, 54bitrid 283 . . . . 5 (𝑅 ∈ Ring → (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5640, 55bitrid 283 . . . 4 (𝑅 ∈ Ring → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
57 rspectopn.3 . . . . . 6 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5857eleq2i 2825 . . . . 5 (𝑥𝐽𝑥 ∈ ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
59 eqid 2733 . . . . . 6 (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6038rabex 5279 . . . . . 6 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ V
6159, 60elrnmpti 5906 . . . . 5 (𝑥 ∈ ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6258, 61bitri 275 . . . 4 (𝑥𝐽 ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6356, 62bitr4di 289 . . 3 (𝑅 ∈ Ring → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ 𝑥𝐽))
6463eqrdv 2731 . 2 (𝑅 ∈ Ring → (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) = 𝐽)
6510, 35, 643eqtr2rd 2775 1 (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4549  cmpt 5174  ran crn 5620  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  TopSetcts 17169  t crest 17326  TopOpenctopn 17327  Ringcrg 20153  LIdealclidl 21145  PrmIdealcprmidl 33407  IDLsrgcidlsrg 33472  Speccrspec 33896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-tset 17182  df-ple 17183  df-rest 17328  df-topn 17329  df-prmidl 33408  df-idlsrg 33473  df-rspec 33897
This theorem is referenced by:  zarcls  33908  zar0ring  33912
  Copyright terms: Public domain W3C validator