Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspectopn Structured version   Visualization version   GIF version

Theorem rspectopn 33555
Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024.)
Hypotheses
Ref Expression
rspecbas.1 𝑆 = (Specβ€˜π‘…)
rspectopn.1 𝐼 = (LIdealβ€˜π‘…)
rspectopn.2 𝑃 = (PrmIdealβ€˜π‘…)
rspectopn.3 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
Assertion
Ref Expression
rspectopn (𝑅 ∈ Ring β†’ 𝐽 = (TopOpenβ€˜π‘†))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)

Proof of Theorem rspectopn
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rspecval 33552 . . . . 5 (𝑅 ∈ Ring β†’ (Specβ€˜π‘…) = ((IDLsrgβ€˜π‘…) β†Ύs (PrmIdealβ€˜π‘…)))
2 rspecbas.1 . . . . 5 𝑆 = (Specβ€˜π‘…)
3 rspectopn.2 . . . . . 6 𝑃 = (PrmIdealβ€˜π‘…)
43oveq2i 7428 . . . . 5 ((IDLsrgβ€˜π‘…) β†Ύs 𝑃) = ((IDLsrgβ€˜π‘…) β†Ύs (PrmIdealβ€˜π‘…))
51, 2, 43eqtr4g 2790 . . . 4 (𝑅 ∈ Ring β†’ 𝑆 = ((IDLsrgβ€˜π‘…) β†Ύs 𝑃))
65fveq2d 6898 . . 3 (𝑅 ∈ Ring β†’ (TopOpenβ€˜π‘†) = (TopOpenβ€˜((IDLsrgβ€˜π‘…) β†Ύs 𝑃)))
7 eqid 2725 . . . 4 ((IDLsrgβ€˜π‘…) β†Ύs 𝑃) = ((IDLsrgβ€˜π‘…) β†Ύs 𝑃)
8 eqid 2725 . . . 4 (TopOpenβ€˜(IDLsrgβ€˜π‘…)) = (TopOpenβ€˜(IDLsrgβ€˜π‘…))
97, 8resstopn 23121 . . 3 ((TopOpenβ€˜(IDLsrgβ€˜π‘…)) β†Ύt 𝑃) = (TopOpenβ€˜((IDLsrgβ€˜π‘…) β†Ύs 𝑃))
106, 9eqtr4di 2783 . 2 (𝑅 ∈ Ring β†’ (TopOpenβ€˜π‘†) = ((TopOpenβ€˜(IDLsrgβ€˜π‘…)) β†Ύt 𝑃))
11 eqid 2725 . . . . 5 (IDLsrgβ€˜π‘…) = (IDLsrgβ€˜π‘…)
12 rspectopn.1 . . . . 5 𝐼 = (LIdealβ€˜π‘…)
13 eqid 2725 . . . . 5 ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})
1411, 12, 13idlsrgtset 33293 . . . 4 (𝑅 ∈ Ring β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (TopSetβ€˜(IDLsrgβ€˜π‘…)))
1512fvexi 6908 . . . . . . . . . . 11 𝐼 ∈ V
1615rabex 5334 . . . . . . . . . 10 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V
1716a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V)
18 simp2 1134 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼 ∧ Β¬ 𝑖 βŠ† 𝑗) β†’ 𝑗 ∈ 𝐼)
1911, 12idlsrgbas 33289 . . . . . . . . . . . . 13 (𝑅 ∈ Ring β†’ 𝐼 = (Baseβ€˜(IDLsrgβ€˜π‘…)))
2019adantr 479 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ 𝐼 = (Baseβ€˜(IDLsrgβ€˜π‘…)))
21203ad2ant1 1130 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼 ∧ Β¬ 𝑖 βŠ† 𝑗) β†’ 𝐼 = (Baseβ€˜(IDLsrgβ€˜π‘…)))
2218, 21eleqtrd 2827 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼 ∧ Β¬ 𝑖 βŠ† 𝑗) β†’ 𝑗 ∈ (Baseβ€˜(IDLsrgβ€˜π‘…)))
2322rabssdv 4069 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} βŠ† (Baseβ€˜(IDLsrgβ€˜π‘…)))
2417, 23elpwd 4609 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
2524ralrimiva 3136 . . . . . . 7 (𝑅 ∈ Ring β†’ βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
26 eqid 2725 . . . . . . . 8 (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})
2726rnmptss 7130 . . . . . . 7 (βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)) β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
2825, 27syl 17 . . . . . 6 (𝑅 ∈ Ring β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
2914, 28eqsstrrd 4017 . . . . 5 (𝑅 ∈ Ring β†’ (TopSetβ€˜(IDLsrgβ€˜π‘…)) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
30 eqid 2725 . . . . . 6 (Baseβ€˜(IDLsrgβ€˜π‘…)) = (Baseβ€˜(IDLsrgβ€˜π‘…))
31 eqid 2725 . . . . . 6 (TopSetβ€˜(IDLsrgβ€˜π‘…)) = (TopSetβ€˜(IDLsrgβ€˜π‘…))
3230, 31topnid 17417 . . . . 5 ((TopSetβ€˜(IDLsrgβ€˜π‘…)) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)) β†’ (TopSetβ€˜(IDLsrgβ€˜π‘…)) = (TopOpenβ€˜(IDLsrgβ€˜π‘…)))
3329, 32syl 17 . . . 4 (𝑅 ∈ Ring β†’ (TopSetβ€˜(IDLsrgβ€˜π‘…)) = (TopOpenβ€˜(IDLsrgβ€˜π‘…)))
3414, 33eqtrd 2765 . . 3 (𝑅 ∈ Ring β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (TopOpenβ€˜(IDLsrgβ€˜π‘…)))
3534oveq1d 7432 . 2 (𝑅 ∈ Ring β†’ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) = ((TopOpenβ€˜(IDLsrgβ€˜π‘…)) β†Ύt 𝑃))
3615mptex 7233 . . . . . . 7 (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) ∈ V
3736rnex 7916 . . . . . 6 ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) ∈ V
383fvexi 6908 . . . . . 6 𝑃 ∈ V
39 elrest 17409 . . . . . 6 ((ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) ∈ V ∧ 𝑃 ∈ V) β†’ (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃)))
4037, 38, 39mp2an 690 . . . . 5 (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃))
4116rgenw 3055 . . . . . . 7 βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V
42 ineq1 4204 . . . . . . . . 9 (𝑦 = {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} β†’ (𝑦 ∩ 𝑃) = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃))
4342eqeq2d 2736 . . . . . . . 8 (𝑦 = {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} β†’ (π‘₯ = (𝑦 ∩ 𝑃) ↔ π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃)))
4426, 43rexrnmptw 7102 . . . . . . 7 (βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V β†’ (βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃)))
4541, 44ax-mp 5 . . . . . 6 (βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃))
46 inrab2 4307 . . . . . . . . 9 ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) = {𝑗 ∈ (𝐼 ∩ 𝑃) ∣ Β¬ 𝑖 βŠ† 𝑗}
47 prmidlssidl 33235 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (PrmIdealβ€˜π‘…) βŠ† (LIdealβ€˜π‘…))
4847, 3, 123sstr4g 4023 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ 𝑃 βŠ† 𝐼)
49 sseqin2 4214 . . . . . . . . . . 11 (𝑃 βŠ† 𝐼 ↔ (𝐼 ∩ 𝑃) = 𝑃)
5048, 49sylib 217 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (𝐼 ∩ 𝑃) = 𝑃)
5150rabeqdv 3435 . . . . . . . . 9 (𝑅 ∈ Ring β†’ {𝑗 ∈ (𝐼 ∩ 𝑃) ∣ Β¬ 𝑖 βŠ† 𝑗} = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
5246, 51eqtrid 2777 . . . . . . . 8 (𝑅 ∈ Ring β†’ ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
5352eqeq2d 2736 . . . . . . 7 (𝑅 ∈ Ring β†’ (π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) ↔ π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
5453rexbidv 3169 . . . . . 6 (𝑅 ∈ Ring β†’ (βˆƒπ‘– ∈ 𝐼 π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
5545, 54bitrid 282 . . . . 5 (𝑅 ∈ Ring β†’ (βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
5640, 55bitrid 282 . . . 4 (𝑅 ∈ Ring β†’ (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
57 rspectopn.3 . . . . . 6 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
5857eleq2i 2817 . . . . 5 (π‘₯ ∈ 𝐽 ↔ π‘₯ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
59 eqid 2725 . . . . . 6 (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
6038rabex 5334 . . . . . 6 {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V
6159, 60elrnmpti 5961 . . . . 5 (π‘₯ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
6258, 61bitri 274 . . . 4 (π‘₯ ∈ 𝐽 ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
6356, 62bitr4di 288 . . 3 (𝑅 ∈ Ring β†’ (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ π‘₯ ∈ 𝐽))
6463eqrdv 2723 . 2 (𝑅 ∈ Ring β†’ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) = 𝐽)
6510, 35, 643eqtr2rd 2772 1 (𝑅 ∈ Ring β†’ 𝐽 = (TopOpenβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419  Vcvv 3463   ∩ cin 3944   βŠ† wss 3945  π’« cpw 4603   ↦ cmpt 5231  ran crn 5678  β€˜cfv 6547  (class class class)co 7417  Basecbs 17180   β†Ύs cress 17209  TopSetcts 17239   β†Ύt crest 17402  TopOpenctopn 17403  Ringcrg 20178  LIdealclidl 21107  PrmIdealcprmidl 33225  IDLsrgcidlsrg 33285  Speccrspec 33550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-tset 17252  df-ple 17253  df-rest 17404  df-topn 17405  df-prmidl 33226  df-idlsrg 33286  df-rspec 33551
This theorem is referenced by:  zarcls  33562  zar0ring  33566
  Copyright terms: Public domain W3C validator