Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspectopn Structured version   Visualization version   GIF version

Theorem rspectopn 31817
Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024.)
Hypotheses
Ref Expression
rspecbas.1 𝑆 = (Spec‘𝑅)
rspectopn.1 𝐼 = (LIdeal‘𝑅)
rspectopn.2 𝑃 = (PrmIdeal‘𝑅)
rspectopn.3 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
Assertion
Ref Expression
rspectopn (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)

Proof of Theorem rspectopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rspecval 31814 . . . . 5 (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
2 rspecbas.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 rspectopn.2 . . . . . 6 𝑃 = (PrmIdeal‘𝑅)
43oveq2i 7286 . . . . 5 ((IDLsrg‘𝑅) ↾s 𝑃) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))
51, 2, 43eqtr4g 2803 . . . 4 (𝑅 ∈ Ring → 𝑆 = ((IDLsrg‘𝑅) ↾s 𝑃))
65fveq2d 6778 . . 3 (𝑅 ∈ Ring → (TopOpen‘𝑆) = (TopOpen‘((IDLsrg‘𝑅) ↾s 𝑃)))
7 eqid 2738 . . . 4 ((IDLsrg‘𝑅) ↾s 𝑃) = ((IDLsrg‘𝑅) ↾s 𝑃)
8 eqid 2738 . . . 4 (TopOpen‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅))
97, 8resstopn 22337 . . 3 ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃) = (TopOpen‘((IDLsrg‘𝑅) ↾s 𝑃))
106, 9eqtr4di 2796 . 2 (𝑅 ∈ Ring → (TopOpen‘𝑆) = ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃))
11 eqid 2738 . . . . 5 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
12 rspectopn.1 . . . . 5 𝐼 = (LIdeal‘𝑅)
13 eqid 2738 . . . . 5 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
1411, 12, 13idlsrgtset 31653 . . . 4 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopSet‘(IDLsrg‘𝑅)))
1512fvexi 6788 . . . . . . . . . . 11 𝐼 ∈ V
1615rabex 5256 . . . . . . . . . 10 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V
1716a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V)
18 simp2 1136 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝑗𝐼)
1911, 12idlsrgbas 31649 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐼 = (Base‘(IDLsrg‘𝑅)))
2019adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → 𝐼 = (Base‘(IDLsrg‘𝑅)))
21203ad2ant1 1132 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝐼 = (Base‘(IDLsrg‘𝑅)))
2218, 21eleqtrd 2841 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝑗 ∈ (Base‘(IDLsrg‘𝑅)))
2322rabssdv 4008 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ⊆ (Base‘(IDLsrg‘𝑅)))
2417, 23elpwd 4541 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)))
2524ralrimiva 3103 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)))
26 eqid 2738 . . . . . . . 8 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
2726rnmptss 6996 . . . . . . 7 (∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)) → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
2825, 27syl 17 . . . . . 6 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
2914, 28eqsstrrd 3960 . . . . 5 (𝑅 ∈ Ring → (TopSet‘(IDLsrg‘𝑅)) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
30 eqid 2738 . . . . . 6 (Base‘(IDLsrg‘𝑅)) = (Base‘(IDLsrg‘𝑅))
31 eqid 2738 . . . . . 6 (TopSet‘(IDLsrg‘𝑅)) = (TopSet‘(IDLsrg‘𝑅))
3230, 31topnid 17146 . . . . 5 ((TopSet‘(IDLsrg‘𝑅)) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)) → (TopSet‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅)))
3329, 32syl 17 . . . 4 (𝑅 ∈ Ring → (TopSet‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅)))
3414, 33eqtrd 2778 . . 3 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopOpen‘(IDLsrg‘𝑅)))
3534oveq1d 7290 . 2 (𝑅 ∈ Ring → (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) = ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃))
3615mptex 7099 . . . . . . 7 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
3736rnex 7759 . . . . . 6 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
383fvexi 6788 . . . . . 6 𝑃 ∈ V
39 elrest 17138 . . . . . 6 ((ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V ∧ 𝑃 ∈ V) → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃)))
4037, 38, 39mp2an 689 . . . . 5 (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃))
4116rgenw 3076 . . . . . . 7 𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V
42 ineq1 4139 . . . . . . . . 9 (𝑦 = {𝑗𝐼 ∣ ¬ 𝑖𝑗} → (𝑦𝑃) = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃))
4342eqeq2d 2749 . . . . . . . 8 (𝑦 = {𝑗𝐼 ∣ ¬ 𝑖𝑗} → (𝑥 = (𝑦𝑃) ↔ 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃)))
4426, 43rexrnmptw 6971 . . . . . . 7 (∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V → (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃)))
4541, 44ax-mp 5 . . . . . 6 (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃))
46 inrab2 4241 . . . . . . . . 9 ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) = {𝑗 ∈ (𝐼𝑃) ∣ ¬ 𝑖𝑗}
47 prmidlssidl 31620 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
4847, 3, 123sstr4g 3966 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃𝐼)
49 sseqin2 4149 . . . . . . . . . . 11 (𝑃𝐼 ↔ (𝐼𝑃) = 𝑃)
5048, 49sylib 217 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐼𝑃) = 𝑃)
5150rabeqdv 3419 . . . . . . . . 9 (𝑅 ∈ Ring → {𝑗 ∈ (𝐼𝑃) ∣ ¬ 𝑖𝑗} = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5246, 51eqtrid 2790 . . . . . . . 8 (𝑅 ∈ Ring → ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5352eqeq2d 2749 . . . . . . 7 (𝑅 ∈ Ring → (𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) ↔ 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5453rexbidv 3226 . . . . . 6 (𝑅 ∈ Ring → (∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5545, 54syl5bb 283 . . . . 5 (𝑅 ∈ Ring → (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5640, 55syl5bb 283 . . . 4 (𝑅 ∈ Ring → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
57 rspectopn.3 . . . . . 6 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5857eleq2i 2830 . . . . 5 (𝑥𝐽𝑥 ∈ ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
59 eqid 2738 . . . . . 6 (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6038rabex 5256 . . . . . 6 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ V
6159, 60elrnmpti 5869 . . . . 5 (𝑥 ∈ ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6258, 61bitri 274 . . . 4 (𝑥𝐽 ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6356, 62bitr4di 289 . . 3 (𝑅 ∈ Ring → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ 𝑥𝐽))
6463eqrdv 2736 . 2 (𝑅 ∈ Ring → (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) = 𝐽)
6510, 35, 643eqtr2rd 2785 1 (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  TopSetcts 16968  t crest 17131  TopOpenctopn 17132  Ringcrg 19783  LIdealclidl 20432  PrmIdealcprmidl 31610  IDLsrgcidlsrg 31645  Speccrspec 31812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-rest 17133  df-topn 17134  df-prmidl 31611  df-idlsrg 31646  df-rspec 31813
This theorem is referenced by:  zarcls  31824  zar0ring  31828
  Copyright terms: Public domain W3C validator