Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspectopn Structured version   Visualization version   GIF version

Theorem rspectopn 33864
Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024.)
Hypotheses
Ref Expression
rspecbas.1 𝑆 = (Spec‘𝑅)
rspectopn.1 𝐼 = (LIdeal‘𝑅)
rspectopn.2 𝑃 = (PrmIdeal‘𝑅)
rspectopn.3 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
Assertion
Ref Expression
rspectopn (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)

Proof of Theorem rspectopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rspecval 33861 . . . . 5 (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
2 rspecbas.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 rspectopn.2 . . . . . 6 𝑃 = (PrmIdeal‘𝑅)
43oveq2i 7401 . . . . 5 ((IDLsrg‘𝑅) ↾s 𝑃) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))
51, 2, 43eqtr4g 2790 . . . 4 (𝑅 ∈ Ring → 𝑆 = ((IDLsrg‘𝑅) ↾s 𝑃))
65fveq2d 6865 . . 3 (𝑅 ∈ Ring → (TopOpen‘𝑆) = (TopOpen‘((IDLsrg‘𝑅) ↾s 𝑃)))
7 eqid 2730 . . . 4 ((IDLsrg‘𝑅) ↾s 𝑃) = ((IDLsrg‘𝑅) ↾s 𝑃)
8 eqid 2730 . . . 4 (TopOpen‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅))
97, 8resstopn 23080 . . 3 ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃) = (TopOpen‘((IDLsrg‘𝑅) ↾s 𝑃))
106, 9eqtr4di 2783 . 2 (𝑅 ∈ Ring → (TopOpen‘𝑆) = ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃))
11 eqid 2730 . . . . 5 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
12 rspectopn.1 . . . . 5 𝐼 = (LIdeal‘𝑅)
13 eqid 2730 . . . . 5 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
1411, 12, 13idlsrgtset 33486 . . . 4 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopSet‘(IDLsrg‘𝑅)))
1512fvexi 6875 . . . . . . . . . . 11 𝐼 ∈ V
1615rabex 5297 . . . . . . . . . 10 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V
1716a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V)
18 simp2 1137 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝑗𝐼)
1911, 12idlsrgbas 33482 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐼 = (Base‘(IDLsrg‘𝑅)))
2019adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → 𝐼 = (Base‘(IDLsrg‘𝑅)))
21203ad2ant1 1133 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝐼 = (Base‘(IDLsrg‘𝑅)))
2218, 21eleqtrd 2831 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑖𝐼) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗) → 𝑗 ∈ (Base‘(IDLsrg‘𝑅)))
2322rabssdv 4041 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ⊆ (Base‘(IDLsrg‘𝑅)))
2417, 23elpwd 4572 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖𝐼) → {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)))
2524ralrimiva 3126 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)))
26 eqid 2730 . . . . . . . 8 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
2726rnmptss 7098 . . . . . . 7 (∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ 𝒫 (Base‘(IDLsrg‘𝑅)) → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
2825, 27syl 17 . . . . . 6 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
2914, 28eqsstrrd 3985 . . . . 5 (𝑅 ∈ Ring → (TopSet‘(IDLsrg‘𝑅)) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)))
30 eqid 2730 . . . . . 6 (Base‘(IDLsrg‘𝑅)) = (Base‘(IDLsrg‘𝑅))
31 eqid 2730 . . . . . 6 (TopSet‘(IDLsrg‘𝑅)) = (TopSet‘(IDLsrg‘𝑅))
3230, 31topnid 17405 . . . . 5 ((TopSet‘(IDLsrg‘𝑅)) ⊆ 𝒫 (Base‘(IDLsrg‘𝑅)) → (TopSet‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅)))
3329, 32syl 17 . . . 4 (𝑅 ∈ Ring → (TopSet‘(IDLsrg‘𝑅)) = (TopOpen‘(IDLsrg‘𝑅)))
3414, 33eqtrd 2765 . . 3 (𝑅 ∈ Ring → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopOpen‘(IDLsrg‘𝑅)))
3534oveq1d 7405 . 2 (𝑅 ∈ Ring → (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) = ((TopOpen‘(IDLsrg‘𝑅)) ↾t 𝑃))
3615mptex 7200 . . . . . . 7 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
3736rnex 7889 . . . . . 6 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
383fvexi 6875 . . . . . 6 𝑃 ∈ V
39 elrest 17397 . . . . . 6 ((ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V ∧ 𝑃 ∈ V) → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃)))
4037, 38, 39mp2an 692 . . . . 5 (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃))
4116rgenw 3049 . . . . . . 7 𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V
42 ineq1 4179 . . . . . . . . 9 (𝑦 = {𝑗𝐼 ∣ ¬ 𝑖𝑗} → (𝑦𝑃) = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃))
4342eqeq2d 2741 . . . . . . . 8 (𝑦 = {𝑗𝐼 ∣ ¬ 𝑖𝑗} → (𝑥 = (𝑦𝑃) ↔ 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃)))
4426, 43rexrnmptw 7070 . . . . . . 7 (∀𝑖𝐼 {𝑗𝐼 ∣ ¬ 𝑖𝑗} ∈ V → (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃)))
4541, 44ax-mp 5 . . . . . 6 (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃))
46 inrab2 4283 . . . . . . . . 9 ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) = {𝑗 ∈ (𝐼𝑃) ∣ ¬ 𝑖𝑗}
47 prmidlssidl 33423 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
4847, 3, 123sstr4g 4003 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃𝐼)
49 sseqin2 4189 . . . . . . . . . . 11 (𝑃𝐼 ↔ (𝐼𝑃) = 𝑃)
5048, 49sylib 218 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐼𝑃) = 𝑃)
5150rabeqdv 3424 . . . . . . . . 9 (𝑅 ∈ Ring → {𝑗 ∈ (𝐼𝑃) ∣ ¬ 𝑖𝑗} = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5246, 51eqtrid 2777 . . . . . . . 8 (𝑅 ∈ Ring → ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5352eqeq2d 2741 . . . . . . 7 (𝑅 ∈ Ring → (𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) ↔ 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5453rexbidv 3158 . . . . . 6 (𝑅 ∈ Ring → (∃𝑖𝐼 𝑥 = ({𝑗𝐼 ∣ ¬ 𝑖𝑗} ∩ 𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5545, 54bitrid 283 . . . . 5 (𝑅 ∈ Ring → (∃𝑦 ∈ ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})𝑥 = (𝑦𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
5640, 55bitrid 283 . . . 4 (𝑅 ∈ Ring → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
57 rspectopn.3 . . . . . 6 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
5857eleq2i 2821 . . . . 5 (𝑥𝐽𝑥 ∈ ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
59 eqid 2730 . . . . . 6 (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6038rabex 5297 . . . . . 6 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ V
6159, 60elrnmpti 5929 . . . . 5 (𝑥 ∈ ran (𝑖𝐼 ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6258, 61bitri 275 . . . 4 (𝑥𝐽 ↔ ∃𝑖𝐼 𝑥 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
6356, 62bitr4di 289 . . 3 (𝑅 ∈ Ring → (𝑥 ∈ (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) ↔ 𝑥𝐽))
6463eqrdv 2728 . 2 (𝑅 ∈ Ring → (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ↾t 𝑃) = 𝐽)
6510, 35, 643eqtr2rd 2772 1 (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  TopSetcts 17233  t crest 17390  TopOpenctopn 17391  Ringcrg 20149  LIdealclidl 21123  PrmIdealcprmidl 33413  IDLsrgcidlsrg 33478  Speccrspec 33859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-rest 17392  df-topn 17393  df-prmidl 33414  df-idlsrg 33479  df-rspec 33860
This theorem is referenced by:  zarcls  33871  zar0ring  33875
  Copyright terms: Public domain W3C validator