Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspectopn Structured version   Visualization version   GIF version

Theorem rspectopn 33404
Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024.)
Hypotheses
Ref Expression
rspecbas.1 𝑆 = (Specβ€˜π‘…)
rspectopn.1 𝐼 = (LIdealβ€˜π‘…)
rspectopn.2 𝑃 = (PrmIdealβ€˜π‘…)
rspectopn.3 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
Assertion
Ref Expression
rspectopn (𝑅 ∈ Ring β†’ 𝐽 = (TopOpenβ€˜π‘†))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)

Proof of Theorem rspectopn
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rspecval 33401 . . . . 5 (𝑅 ∈ Ring β†’ (Specβ€˜π‘…) = ((IDLsrgβ€˜π‘…) β†Ύs (PrmIdealβ€˜π‘…)))
2 rspecbas.1 . . . . 5 𝑆 = (Specβ€˜π‘…)
3 rspectopn.2 . . . . . 6 𝑃 = (PrmIdealβ€˜π‘…)
43oveq2i 7425 . . . . 5 ((IDLsrgβ€˜π‘…) β†Ύs 𝑃) = ((IDLsrgβ€˜π‘…) β†Ύs (PrmIdealβ€˜π‘…))
51, 2, 43eqtr4g 2792 . . . 4 (𝑅 ∈ Ring β†’ 𝑆 = ((IDLsrgβ€˜π‘…) β†Ύs 𝑃))
65fveq2d 6895 . . 3 (𝑅 ∈ Ring β†’ (TopOpenβ€˜π‘†) = (TopOpenβ€˜((IDLsrgβ€˜π‘…) β†Ύs 𝑃)))
7 eqid 2727 . . . 4 ((IDLsrgβ€˜π‘…) β†Ύs 𝑃) = ((IDLsrgβ€˜π‘…) β†Ύs 𝑃)
8 eqid 2727 . . . 4 (TopOpenβ€˜(IDLsrgβ€˜π‘…)) = (TopOpenβ€˜(IDLsrgβ€˜π‘…))
97, 8resstopn 23077 . . 3 ((TopOpenβ€˜(IDLsrgβ€˜π‘…)) β†Ύt 𝑃) = (TopOpenβ€˜((IDLsrgβ€˜π‘…) β†Ύs 𝑃))
106, 9eqtr4di 2785 . 2 (𝑅 ∈ Ring β†’ (TopOpenβ€˜π‘†) = ((TopOpenβ€˜(IDLsrgβ€˜π‘…)) β†Ύt 𝑃))
11 eqid 2727 . . . . 5 (IDLsrgβ€˜π‘…) = (IDLsrgβ€˜π‘…)
12 rspectopn.1 . . . . 5 𝐼 = (LIdealβ€˜π‘…)
13 eqid 2727 . . . . 5 ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})
1411, 12, 13idlsrgtset 33155 . . . 4 (𝑅 ∈ Ring β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (TopSetβ€˜(IDLsrgβ€˜π‘…)))
1512fvexi 6905 . . . . . . . . . . 11 𝐼 ∈ V
1615rabex 5328 . . . . . . . . . 10 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V
1716a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V)
18 simp2 1135 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼 ∧ Β¬ 𝑖 βŠ† 𝑗) β†’ 𝑗 ∈ 𝐼)
1911, 12idlsrgbas 33151 . . . . . . . . . . . . 13 (𝑅 ∈ Ring β†’ 𝐼 = (Baseβ€˜(IDLsrgβ€˜π‘…)))
2019adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ 𝐼 = (Baseβ€˜(IDLsrgβ€˜π‘…)))
21203ad2ant1 1131 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼 ∧ Β¬ 𝑖 βŠ† 𝑗) β†’ 𝐼 = (Baseβ€˜(IDLsrgβ€˜π‘…)))
2218, 21eleqtrd 2830 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼 ∧ Β¬ 𝑖 βŠ† 𝑗) β†’ 𝑗 ∈ (Baseβ€˜(IDLsrgβ€˜π‘…)))
2322rabssdv 4068 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} βŠ† (Baseβ€˜(IDLsrgβ€˜π‘…)))
2417, 23elpwd 4604 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼) β†’ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
2524ralrimiva 3141 . . . . . . 7 (𝑅 ∈ Ring β†’ βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
26 eqid 2727 . . . . . . . 8 (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})
2726rnmptss 7127 . . . . . . 7 (βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)) β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
2825, 27syl 17 . . . . . 6 (𝑅 ∈ Ring β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
2914, 28eqsstrrd 4017 . . . . 5 (𝑅 ∈ Ring β†’ (TopSetβ€˜(IDLsrgβ€˜π‘…)) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)))
30 eqid 2727 . . . . . 6 (Baseβ€˜(IDLsrgβ€˜π‘…)) = (Baseβ€˜(IDLsrgβ€˜π‘…))
31 eqid 2727 . . . . . 6 (TopSetβ€˜(IDLsrgβ€˜π‘…)) = (TopSetβ€˜(IDLsrgβ€˜π‘…))
3230, 31topnid 17408 . . . . 5 ((TopSetβ€˜(IDLsrgβ€˜π‘…)) βŠ† 𝒫 (Baseβ€˜(IDLsrgβ€˜π‘…)) β†’ (TopSetβ€˜(IDLsrgβ€˜π‘…)) = (TopOpenβ€˜(IDLsrgβ€˜π‘…)))
3329, 32syl 17 . . . 4 (𝑅 ∈ Ring β†’ (TopSetβ€˜(IDLsrgβ€˜π‘…)) = (TopOpenβ€˜(IDLsrgβ€˜π‘…)))
3414, 33eqtrd 2767 . . 3 (𝑅 ∈ Ring β†’ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (TopOpenβ€˜(IDLsrgβ€˜π‘…)))
3534oveq1d 7429 . 2 (𝑅 ∈ Ring β†’ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) = ((TopOpenβ€˜(IDLsrgβ€˜π‘…)) β†Ύt 𝑃))
3615mptex 7229 . . . . . . 7 (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) ∈ V
3736rnex 7912 . . . . . 6 ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) ∈ V
383fvexi 6905 . . . . . 6 𝑃 ∈ V
39 elrest 17400 . . . . . 6 ((ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) ∈ V ∧ 𝑃 ∈ V) β†’ (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃)))
4037, 38, 39mp2an 691 . . . . 5 (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃))
4116rgenw 3060 . . . . . . 7 βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V
42 ineq1 4201 . . . . . . . . 9 (𝑦 = {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} β†’ (𝑦 ∩ 𝑃) = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃))
4342eqeq2d 2738 . . . . . . . 8 (𝑦 = {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} β†’ (π‘₯ = (𝑦 ∩ 𝑃) ↔ π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃)))
4426, 43rexrnmptw 7099 . . . . . . 7 (βˆ€π‘– ∈ 𝐼 {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V β†’ (βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃)))
4541, 44ax-mp 5 . . . . . 6 (βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃))
46 inrab2 4303 . . . . . . . . 9 ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) = {𝑗 ∈ (𝐼 ∩ 𝑃) ∣ Β¬ 𝑖 βŠ† 𝑗}
47 prmidlssidl 33096 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (PrmIdealβ€˜π‘…) βŠ† (LIdealβ€˜π‘…))
4847, 3, 123sstr4g 4023 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ 𝑃 βŠ† 𝐼)
49 sseqin2 4211 . . . . . . . . . . 11 (𝑃 βŠ† 𝐼 ↔ (𝐼 ∩ 𝑃) = 𝑃)
5048, 49sylib 217 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (𝐼 ∩ 𝑃) = 𝑃)
5150rabeqdv 3442 . . . . . . . . 9 (𝑅 ∈ Ring β†’ {𝑗 ∈ (𝐼 ∩ 𝑃) ∣ Β¬ 𝑖 βŠ† 𝑗} = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
5246, 51eqtrid 2779 . . . . . . . 8 (𝑅 ∈ Ring β†’ ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
5352eqeq2d 2738 . . . . . . 7 (𝑅 ∈ Ring β†’ (π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) ↔ π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
5453rexbidv 3173 . . . . . 6 (𝑅 ∈ Ring β†’ (βˆƒπ‘– ∈ 𝐼 π‘₯ = ({𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗} ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
5545, 54bitrid 283 . . . . 5 (𝑅 ∈ Ring β†’ (βˆƒπ‘¦ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗})π‘₯ = (𝑦 ∩ 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
5640, 55bitrid 283 . . . 4 (𝑅 ∈ Ring β†’ (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
57 rspectopn.3 . . . . . 6 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
5857eleq2i 2820 . . . . 5 (π‘₯ ∈ 𝐽 ↔ π‘₯ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}))
59 eqid 2727 . . . . . 6 (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}) = (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
6038rabex 5328 . . . . . 6 {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗} ∈ V
6159, 60elrnmpti 5956 . . . . 5 (π‘₯ ∈ ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗}) ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
6258, 61bitri 275 . . . 4 (π‘₯ ∈ 𝐽 ↔ βˆƒπ‘– ∈ 𝐼 π‘₯ = {𝑗 ∈ 𝑃 ∣ Β¬ 𝑖 βŠ† 𝑗})
6356, 62bitr4di 289 . . 3 (𝑅 ∈ Ring β†’ (π‘₯ ∈ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) ↔ π‘₯ ∈ 𝐽))
6463eqrdv 2725 . 2 (𝑅 ∈ Ring β†’ (ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ Β¬ 𝑖 βŠ† 𝑗}) β†Ύt 𝑃) = 𝐽)
6510, 35, 643eqtr2rd 2774 1 (𝑅 ∈ Ring β†’ 𝐽 = (TopOpenβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  βˆƒwrex 3065  {crab 3427  Vcvv 3469   ∩ cin 3943   βŠ† wss 3944  π’« cpw 4598   ↦ cmpt 5225  ran crn 5673  β€˜cfv 6542  (class class class)co 7414  Basecbs 17171   β†Ύs cress 17200  TopSetcts 17230   β†Ύt crest 17393  TopOpenctopn 17394  Ringcrg 20164  LIdealclidl 21091  PrmIdealcprmidl 33086  IDLsrgcidlsrg 33147  Speccrspec 33399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-tset 17243  df-ple 17244  df-rest 17395  df-topn 17396  df-prmidl 33087  df-idlsrg 33148  df-rspec 33400
This theorem is referenced by:  zarcls  33411  zar0ring  33415
  Copyright terms: Public domain W3C validator