MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfphi2 Structured version   Visualization version   GIF version

Theorem dfphi2 16687
Description: Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 12825 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 phi1 16686 . . . . 5 (ϕ‘1) = 1
3 0z 12486 . . . . . 6 0 ∈ ℤ
4 hashsng 14278 . . . . . 6 (0 ∈ ℤ → (♯‘{0}) = 1)
53, 4ax-mp 5 . . . . 5 (♯‘{0}) = 1
6 rabid2 3429 . . . . . . 7 ({0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1} ↔ ∀𝑥 ∈ {0} (𝑥 gcd 1) = 1)
7 elsni 4592 . . . . . . . . 9 (𝑥 ∈ {0} → 𝑥 = 0)
87oveq1d 7367 . . . . . . . 8 (𝑥 ∈ {0} → (𝑥 gcd 1) = (0 gcd 1))
9 gcd1 16441 . . . . . . . . 9 (0 ∈ ℤ → (0 gcd 1) = 1)
103, 9ax-mp 5 . . . . . . . 8 (0 gcd 1) = 1
118, 10eqtrdi 2784 . . . . . . 7 (𝑥 ∈ {0} → (𝑥 gcd 1) = 1)
126, 11mprgbir 3055 . . . . . 6 {0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}
1312fveq2i 6831 . . . . 5 (♯‘{0}) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
142, 5, 133eqtr2i 2762 . . . 4 (ϕ‘1) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
15 fveq2 6828 . . . 4 (𝑁 = 1 → (ϕ‘𝑁) = (ϕ‘1))
16 oveq2 7360 . . . . . . 7 (𝑁 = 1 → (0..^𝑁) = (0..^1))
17 fzo01 13649 . . . . . . 7 (0..^1) = {0}
1816, 17eqtrdi 2784 . . . . . 6 (𝑁 = 1 → (0..^𝑁) = {0})
19 oveq2 7360 . . . . . . 7 (𝑁 = 1 → (𝑥 gcd 𝑁) = (𝑥 gcd 1))
2019eqeq1d 2735 . . . . . 6 (𝑁 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (𝑥 gcd 1) = 1))
2118, 20rabeqbidv 3414 . . . . 5 (𝑁 = 1 → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
2221fveq2d 6832 . . . 4 (𝑁 = 1 → (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}))
2314, 15, 223eqtr4a 2794 . . 3 (𝑁 = 1 → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
24 eluz2nn 12788 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
25 phival 16680 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2624, 25syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
27 fzossfz 13580 . . . . . . . . . . 11 (1..^𝑁) ⊆ (1...𝑁)
2827a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) ⊆ (1...𝑁))
29 sseqin2 4172 . . . . . . . . . 10 ((1..^𝑁) ⊆ (1...𝑁) ↔ ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3028, 29sylib 218 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
31 fzo0ss1 13591 . . . . . . . . . 10 (1..^𝑁) ⊆ (0..^𝑁)
32 sseqin2 4172 . . . . . . . . . 10 ((1..^𝑁) ⊆ (0..^𝑁) ↔ ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3331, 32mpbi 230 . . . . . . . . 9 ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁)
3430, 33eqtr4di 2786 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = ((0..^𝑁) ∩ (1..^𝑁)))
3534rabeqdv 3411 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1})
36 inrab2 4266 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
37 inrab2 4266 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
3835, 36, 373eqtr4g 2793 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)))
39 phibndlem 16683 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
40 eluzelz 12748 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
41 fzoval 13562 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
4240, 41syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) = (1...(𝑁 − 1)))
4339, 42sseqtrrd 3968 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
44 dfss2 3916 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
4543, 44sylib 218 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
46 gcd0id 16432 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
4740, 46syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = (abs‘𝑁))
48 eluzelre 12749 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
49 eluzge2nn0 12792 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
5049nn0ge0d 12452 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 0 ≤ 𝑁)
5148, 50absidd 15332 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
5247, 51eqtrd 2768 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = 𝑁)
53 eluz2b3 12822 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
5453simprbi 496 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
5552, 54eqnetrd 2996 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) ≠ 1)
5655adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (0 gcd 𝑁) ≠ 1)
577oveq1d 7367 . . . . . . . . . . . . . 14 (𝑥 ∈ {0} → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5857, 17eleq2s 2851 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5958neeq1d 2988 . . . . . . . . . . . 12 (𝑥 ∈ (0..^1) → ((𝑥 gcd 𝑁) ≠ 1 ↔ (0 gcd 𝑁) ≠ 1))
6056, 59syl5ibrcom 247 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) ≠ 1))
6160necon2bd 2945 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → ¬ 𝑥 ∈ (0..^1)))
62 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
63 1z 12508 . . . . . . . . . . . 12 1 ∈ ℤ
64 fzospliti 13593 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^𝑁) ∧ 1 ∈ ℤ) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6562, 63, 64sylancl 586 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6665ord 864 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (¬ 𝑥 ∈ (0..^1) → 𝑥 ∈ (1..^𝑁)))
6761, 66syld 47 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
6867ralrimiva 3125 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
69 rabss 4019 . . . . . . . 8 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
7068, 69sylibr 234 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
71 dfss2 3916 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7270, 71sylib 218 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7338, 45, 723eqtr3d 2776 . . . . 5 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7473fveq2d 6832 . . . 4 (𝑁 ∈ (ℤ‘2) → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7526, 74eqtrd 2768 . . 3 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7623, 75jaoi 857 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
771, 76sylbi 217 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  cin 3897  wss 3898  {csn 4575  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  cmin 11351  cn 12132  2c2 12187  cz 12475  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  abscabs 15143   gcd cgcd 16407  ϕcphi 16677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-phi 16679
This theorem is referenced by:  phimullem  16692  eulerth  16696  hashgcdeq  16703  odngen  19491  znunithash  21503
  Copyright terms: Public domain W3C validator