![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzval2 | Structured version Visualization version GIF version |
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
fzval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzval 13482 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
2 | zssre 12561 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
3 | ressxr 11254 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
4 | 2, 3 | sstri 3990 | . . . . . 6 ⊢ ℤ ⊆ ℝ* |
5 | 4 | sseli 3977 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
6 | 4 | sseli 3977 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*) |
7 | iccval 13359 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
8 | 5, 6, 7 | syl2an 596 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
9 | 8 | ineq1d 4210 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ)) |
10 | inrab2 4306 | . . . 4 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} | |
11 | sseqin2 4214 | . . . . . 6 ⊢ (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ) | |
12 | 4, 11 | mpbi 229 | . . . . 5 ⊢ (ℝ* ∩ ℤ) = ℤ |
13 | 12 | rabeqi 3445 | . . . 4 ⊢ {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
14 | 10, 13 | eqtri 2760 | . . 3 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
15 | 9, 14 | eqtr2di 2789 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = ((𝑀[,]𝑁) ∩ ℤ)) |
16 | 1, 15 | eqtrd 2772 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ∩ cin 3946 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7405 ℝcr 11105 ℝ*cxr 11243 ≤ cle 11245 ℤcz 12554 [,]cicc 13323 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-xr 11248 df-neg 11443 df-z 12555 df-icc 13327 df-fz 13481 |
This theorem is referenced by: dvfsumle 25529 dvfsumabs 25531 taylplem1 25866 taylplem2 25867 taylpfval 25868 dvtaylp 25873 ppisval 26597 gg-dvfsumle 35170 |
Copyright terms: Public domain | W3C validator |