| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzval2 | Structured version Visualization version GIF version | ||
| Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| fzval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval 13409 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
| 2 | zssre 12475 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
| 3 | ressxr 11156 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
| 4 | 2, 3 | sstri 3939 | . . . . . 6 ⊢ ℤ ⊆ ℝ* |
| 5 | 4 | sseli 3925 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
| 6 | 4 | sseli 3925 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*) |
| 7 | iccval 13284 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| 9 | 8 | ineq1d 4166 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ)) |
| 10 | inrab2 4264 | . . . 4 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} | |
| 11 | sseqin2 4170 | . . . . . 6 ⊢ (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ) | |
| 12 | 4, 11 | mpbi 230 | . . . . 5 ⊢ (ℝ* ∩ ℤ) = ℤ |
| 13 | 12 | rabeqi 3408 | . . . 4 ⊢ {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
| 14 | 10, 13 | eqtri 2754 | . . 3 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
| 15 | 9, 14 | eqtr2di 2783 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = ((𝑀[,]𝑁) ∩ ℤ)) |
| 16 | 1, 15 | eqtrd 2766 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 ℝ*cxr 11145 ≤ cle 11147 ℤcz 12468 [,]cicc 13248 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-xr 11150 df-neg 11347 df-z 12469 df-icc 13252 df-fz 13408 |
| This theorem is referenced by: dvfsumle 25953 dvfsumleOLD 25954 dvfsumabs 25956 taylplem1 26297 taylplem2 26298 taylpfval 26299 dvtaylp 26305 ppisval 27041 |
| Copyright terms: Public domain | W3C validator |