MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval2 Structured version   Visualization version   GIF version

Theorem fzval2 12889
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))

Proof of Theorem fzval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzval 12888 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2 zssre 11982 . . . . . . 7 ℤ ⊆ ℝ
3 ressxr 10679 . . . . . . 7 ℝ ⊆ ℝ*
42, 3sstri 3975 . . . . . 6 ℤ ⊆ ℝ*
54sseli 3962 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
64sseli 3962 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*)
7 iccval 12771 . . . . 5 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
85, 6, 7syl2an 597 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
98ineq1d 4187 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ))
10 inrab2 4275 . . . 4 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)}
11 sseqin2 4191 . . . . . 6 (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ)
124, 11mpbi 232 . . . . 5 (ℝ* ∩ ℤ) = ℤ
1312rabeqi 3482 . . . 4 {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
1410, 13eqtri 2844 . . 3 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
159, 14syl6req 2873 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ((𝑀[,]𝑁) ∩ ℤ))
161, 15eqtrd 2856 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  cin 3934  wss 3935   class class class wbr 5058  (class class class)co 7150  cr 10530  *cxr 10668  cle 10670  cz 11975  [,]cicc 12735  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-xr 10673  df-neg 10867  df-z 11976  df-icc 12739  df-fz 12887
This theorem is referenced by:  dvfsumle  24612  dvfsumabs  24614  taylplem1  24945  taylplem2  24946  taylpfval  24947  dvtaylp  24952  ppisval  25675
  Copyright terms: Public domain W3C validator