Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEWlem Structured version   Visualization version   GIF version

Theorem ordtrest2NEWlem 33919
Description: Lemma for ordtrest2NEW 33920. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEWlem (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑣,𝑤,𝑧   𝑣,   𝑥,𝑤,𝑧,𝑦,   𝑣,𝐴,𝑤,𝑧   𝑣,𝐵,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑣)   𝐾(𝑧,𝑤,𝑣)

Proof of Theorem ordtrest2NEWlem
StepHypRef Expression
1 inrab2 4283 . . . . 5 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧}
2 ordtrest2NEW.3 . . . . . . . 8 (𝜑𝐴𝐵)
3 sseqin2 4189 . . . . . . . 8 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
42, 3sylib 218 . . . . . . 7 (𝜑 → (𝐵𝐴) = 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → (𝐵𝐴) = 𝐴)
6 rabeq 3423 . . . . . 6 ((𝐵𝐴) = 𝐴 → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
75, 6syl 17 . . . . 5 ((𝜑𝑧𝐵) → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
81, 7eqtrid 2777 . . . 4 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
9 ordtNEW.l . . . . . . . . . . . . 13 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
10 fvex 6874 . . . . . . . . . . . . . 14 (le‘𝐾) ∈ V
1110inex1 5275 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
129, 11eqeltri 2825 . . . . . . . . . . . 12 ∈ V
1312inex1 5275 . . . . . . . . . . 11 ( ∩ (𝐴 × 𝐴)) ∈ V
1413a1i 11 . . . . . . . . . 10 (𝜑 → ( ∩ (𝐴 × 𝐴)) ∈ V)
15 eqid 2730 . . . . . . . . . . 11 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
1615ordttopon 23087 . . . . . . . . . 10 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
18 ordtrest2NEW.2 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Toset)
19 tospos 18386 . . . . . . . . . . . 12 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
20 posprs 18284 . . . . . . . . . . . 12 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑𝐾 ∈ Proset )
22 ordtNEW.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2322, 9prsssdm 33914 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2421, 2, 23syl2anc 584 . . . . . . . . . 10 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2524fveq2d 6865 . . . . . . . . 9 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2617, 25eleqtrd 2831 . . . . . . . 8 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
27 toponmax 22820 . . . . . . . 8 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2826, 27syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2928adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
30 rabid2 3442 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤 𝑧)
31 eleq1 2817 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3230, 31sylbir 235 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤 𝑧 → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3329, 32syl5ibcom 245 . . . . 5 ((𝜑𝑧𝐵) → (∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
34 dfrex2 3057 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤 𝑧)
35 breq1 5113 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 𝑧𝑥 𝑧))
3635cbvrexvw 3217 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
3734, 36bitr3i 277 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
38 ordttop 23094 . . . . . . . . . . . . 13 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3914, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
41 0opn 22798 . . . . . . . . . . 11 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4342adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
44 eleq1 2817 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
4543, 44syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
46 rabn0 4355 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤 𝑧)
47 breq1 5113 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 𝑧𝑦 𝑧))
4847notbid 318 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 𝑧 ↔ ¬ 𝑦 𝑧))
4948cbvrexvw 3217 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5046, 49bitri 275 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5118ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝐾 ∈ Toset)
522ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → 𝐴𝐵)
5352sselda 3949 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑦𝐵)
54 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑧𝐵)
5522, 9trleile 32904 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑦𝐵𝑧𝐵) → (𝑦 𝑧𝑧 𝑦))
5651, 53, 54, 55syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑦 𝑧𝑧 𝑦))
5756ord 864 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧𝑧 𝑦))
58 an4 656 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦)))
59 ordtrest2NEW.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
60 rabss 4038 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6261r19.21bi 3230 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐵) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6362an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6463impr 454 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦))) → 𝑧𝐴)
6558, 64sylan2b 594 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧𝐴)
66 brinxp 5720 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6766ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6867notbid 318 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤 𝑧 ↔ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧))
6968rabbidva 3415 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7065, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7124ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
72 rabeq 3423 . . . . . . . . . . . . . . . 16 (dom ( ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7371, 72syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7470, 73eqtr4d 2768 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7513a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → ( ∩ (𝐴 × 𝐴)) ∈ V)
7665, 71eleqtrrd 2832 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴)))
7715ordtopn1 23088 . . . . . . . . . . . . . . 15 ((( ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7875, 76, 77syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7974, 78eqeltrd 2829 . . . . . . . . . . . . 13 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8079anassrs 467 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ (𝑦𝐴𝑧 𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8180expr 456 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑧 𝑦 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8257, 81syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8382rexlimdva 3135 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → (∃𝑦𝐴 ¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8450, 83biimtrid 242 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8545, 84pm2.61dne 3012 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8685rexlimdvaa 3136 . . . . . 6 ((𝜑𝑧𝐵) → (∃𝑥𝐴 𝑥 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8737, 86biimtrid 242 . . . . 5 ((𝜑𝑧𝐵) → (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8833, 87pm2.61d 179 . . . 4 ((𝜑𝑧𝐵) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
898, 88eqeltrd 2829 . . 3 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
9089ralrimiva 3126 . 2 (𝜑 → ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
91 fvex 6874 . . . . . . 7 (Base‘𝐾) ∈ V
9222, 91eqeltri 2825 . . . . . 6 𝐵 ∈ V
9392a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
94 rabexg 5295 . . . . 5 (𝐵 ∈ V → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9593, 94syl 17 . . . 4 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9695ralrimivw 3130 . . 3 (𝜑 → ∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
97 eqid 2730 . . . 4 (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
98 ineq1 4179 . . . . 5 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → (𝑣𝐴) = ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴))
9998eleq1d 2814 . . . 4 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10097, 99ralrnmptw 7069 . . 3 (∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10196, 100syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10290, 101mpbird 257 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cfv 6514  Basecbs 17186  lecple 17234  ordTopcordt 17469   Proset cproset 18260  Posetcpo 18275  Tosetctos 18382  Topctop 22787  TopOnctopon 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-ple 17247  df-topgen 17413  df-ordt 17471  df-proset 18262  df-poset 18281  df-toset 18383  df-top 22788  df-topon 22805  df-bases 22840
This theorem is referenced by:  ordtrest2NEW  33920
  Copyright terms: Public domain W3C validator