Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEWlem Structured version   Visualization version   GIF version

Theorem ordtrest2NEWlem 33868
Description: Lemma for ordtrest2NEW 33869. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEWlem (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑣,𝑤,𝑧   𝑣,   𝑥,𝑤,𝑧,𝑦,   𝑣,𝐴,𝑤,𝑧   𝑣,𝐵,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑣)   𝐾(𝑧,𝑤,𝑣)

Proof of Theorem ordtrest2NEWlem
StepHypRef Expression
1 inrab2 4336 . . . . 5 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧}
2 ordtrest2NEW.3 . . . . . . . 8 (𝜑𝐴𝐵)
3 sseqin2 4244 . . . . . . . 8 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
42, 3sylib 218 . . . . . . 7 (𝜑 → (𝐵𝐴) = 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → (𝐵𝐴) = 𝐴)
6 rabeq 3458 . . . . . 6 ((𝐵𝐴) = 𝐴 → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
75, 6syl 17 . . . . 5 ((𝜑𝑧𝐵) → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
81, 7eqtrid 2792 . . . 4 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
9 ordtNEW.l . . . . . . . . . . . . 13 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
10 fvex 6933 . . . . . . . . . . . . . 14 (le‘𝐾) ∈ V
1110inex1 5335 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
129, 11eqeltri 2840 . . . . . . . . . . . 12 ∈ V
1312inex1 5335 . . . . . . . . . . 11 ( ∩ (𝐴 × 𝐴)) ∈ V
1413a1i 11 . . . . . . . . . 10 (𝜑 → ( ∩ (𝐴 × 𝐴)) ∈ V)
15 eqid 2740 . . . . . . . . . . 11 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
1615ordttopon 23222 . . . . . . . . . 10 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
18 ordtrest2NEW.2 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Toset)
19 tospos 18490 . . . . . . . . . . . 12 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
20 posprs 18386 . . . . . . . . . . . 12 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑𝐾 ∈ Proset )
22 ordtNEW.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2322, 9prsssdm 33863 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2421, 2, 23syl2anc 583 . . . . . . . . . 10 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2524fveq2d 6924 . . . . . . . . 9 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2617, 25eleqtrd 2846 . . . . . . . 8 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
27 toponmax 22953 . . . . . . . 8 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2826, 27syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2928adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
30 rabid2 3478 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤 𝑧)
31 eleq1 2832 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3230, 31sylbir 235 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤 𝑧 → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3329, 32syl5ibcom 245 . . . . 5 ((𝜑𝑧𝐵) → (∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
34 dfrex2 3079 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤 𝑧)
35 breq1 5169 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 𝑧𝑥 𝑧))
3635cbvrexvw 3244 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
3734, 36bitr3i 277 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
38 ordttop 23229 . . . . . . . . . . . . 13 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3914, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
41 0opn 22931 . . . . . . . . . . 11 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4342adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
44 eleq1 2832 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
4543, 44syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
46 rabn0 4412 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤 𝑧)
47 breq1 5169 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 𝑧𝑦 𝑧))
4847notbid 318 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 𝑧 ↔ ¬ 𝑦 𝑧))
4948cbvrexvw 3244 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5046, 49bitri 275 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5118ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝐾 ∈ Toset)
522ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → 𝐴𝐵)
5352sselda 4008 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑦𝐵)
54 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑧𝐵)
5522, 9trleile 32944 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑦𝐵𝑧𝐵) → (𝑦 𝑧𝑧 𝑦))
5651, 53, 54, 55syl3anc 1371 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑦 𝑧𝑧 𝑦))
5756ord 863 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧𝑧 𝑦))
58 an4 655 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦)))
59 ordtrest2NEW.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
60 rabss 4095 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6261r19.21bi 3257 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐵) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6362an32s 651 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6463impr 454 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦))) → 𝑧𝐴)
6558, 64sylan2b 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧𝐴)
66 brinxp 5778 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6766ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6867notbid 318 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤 𝑧 ↔ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧))
6968rabbidva 3450 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7065, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7124ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
72 rabeq 3458 . . . . . . . . . . . . . . . 16 (dom ( ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7371, 72syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7470, 73eqtr4d 2783 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7513a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → ( ∩ (𝐴 × 𝐴)) ∈ V)
7665, 71eleqtrrd 2847 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴)))
7715ordtopn1 23223 . . . . . . . . . . . . . . 15 ((( ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7875, 76, 77syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7974, 78eqeltrd 2844 . . . . . . . . . . . . 13 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8079anassrs 467 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ (𝑦𝐴𝑧 𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8180expr 456 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑧 𝑦 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8257, 81syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8382rexlimdva 3161 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → (∃𝑦𝐴 ¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8450, 83biimtrid 242 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8545, 84pm2.61dne 3034 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8685rexlimdvaa 3162 . . . . . 6 ((𝜑𝑧𝐵) → (∃𝑥𝐴 𝑥 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8737, 86biimtrid 242 . . . . 5 ((𝜑𝑧𝐵) → (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8833, 87pm2.61d 179 . . . 4 ((𝜑𝑧𝐵) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
898, 88eqeltrd 2844 . . 3 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
9089ralrimiva 3152 . 2 (𝜑 → ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
91 fvex 6933 . . . . . . 7 (Base‘𝐾) ∈ V
9222, 91eqeltri 2840 . . . . . 6 𝐵 ∈ V
9392a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
94 rabexg 5355 . . . . 5 (𝐵 ∈ V → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9593, 94syl 17 . . . 4 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9695ralrimivw 3156 . . 3 (𝜑 → ∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
97 eqid 2740 . . . 4 (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
98 ineq1 4234 . . . . 5 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → (𝑣𝐴) = ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴))
9998eleq1d 2829 . . . 4 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10097, 99ralrnmptw 7128 . . 3 (∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10196, 100syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10290, 101mpbird 257 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  cfv 6573  Basecbs 17258  lecple 17318  ordTopcordt 17559   Proset cproset 18363  Posetcpo 18377  Tosetctos 18486  Topctop 22920  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-ple 17331  df-topgen 17503  df-ordt 17561  df-proset 18365  df-poset 18383  df-toset 18487  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  ordtrest2NEW  33869
  Copyright terms: Public domain W3C validator