Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEWlem Structured version   Visualization version   GIF version

Theorem ordtrest2NEWlem 33883
Description: Lemma for ordtrest2NEW 33884. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEWlem (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑣,𝑤,𝑧   𝑣,   𝑥,𝑤,𝑧,𝑦,   𝑣,𝐴,𝑤,𝑧   𝑣,𝐵,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑣)   𝐾(𝑧,𝑤,𝑣)

Proof of Theorem ordtrest2NEWlem
StepHypRef Expression
1 inrab2 4323 . . . . 5 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧}
2 ordtrest2NEW.3 . . . . . . . 8 (𝜑𝐴𝐵)
3 sseqin2 4231 . . . . . . . 8 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
42, 3sylib 218 . . . . . . 7 (𝜑 → (𝐵𝐴) = 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → (𝐵𝐴) = 𝐴)
6 rabeq 3448 . . . . . 6 ((𝐵𝐴) = 𝐴 → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
75, 6syl 17 . . . . 5 ((𝜑𝑧𝐵) → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
81, 7eqtrid 2787 . . . 4 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
9 ordtNEW.l . . . . . . . . . . . . 13 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
10 fvex 6920 . . . . . . . . . . . . . 14 (le‘𝐾) ∈ V
1110inex1 5323 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
129, 11eqeltri 2835 . . . . . . . . . . . 12 ∈ V
1312inex1 5323 . . . . . . . . . . 11 ( ∩ (𝐴 × 𝐴)) ∈ V
1413a1i 11 . . . . . . . . . 10 (𝜑 → ( ∩ (𝐴 × 𝐴)) ∈ V)
15 eqid 2735 . . . . . . . . . . 11 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
1615ordttopon 23217 . . . . . . . . . 10 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
18 ordtrest2NEW.2 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Toset)
19 tospos 18478 . . . . . . . . . . . 12 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
20 posprs 18374 . . . . . . . . . . . 12 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑𝐾 ∈ Proset )
22 ordtNEW.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2322, 9prsssdm 33878 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2421, 2, 23syl2anc 584 . . . . . . . . . 10 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2524fveq2d 6911 . . . . . . . . 9 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2617, 25eleqtrd 2841 . . . . . . . 8 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
27 toponmax 22948 . . . . . . . 8 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2826, 27syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2928adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
30 rabid2 3468 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤 𝑧)
31 eleq1 2827 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3230, 31sylbir 235 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤 𝑧 → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3329, 32syl5ibcom 245 . . . . 5 ((𝜑𝑧𝐵) → (∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
34 dfrex2 3071 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤 𝑧)
35 breq1 5151 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 𝑧𝑥 𝑧))
3635cbvrexvw 3236 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
3734, 36bitr3i 277 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
38 ordttop 23224 . . . . . . . . . . . . 13 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3914, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
41 0opn 22926 . . . . . . . . . . 11 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4342adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
44 eleq1 2827 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
4543, 44syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
46 rabn0 4395 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤 𝑧)
47 breq1 5151 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 𝑧𝑦 𝑧))
4847notbid 318 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 𝑧 ↔ ¬ 𝑦 𝑧))
4948cbvrexvw 3236 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5046, 49bitri 275 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5118ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝐾 ∈ Toset)
522ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → 𝐴𝐵)
5352sselda 3995 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑦𝐵)
54 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑧𝐵)
5522, 9trleile 32946 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑦𝐵𝑧𝐵) → (𝑦 𝑧𝑧 𝑦))
5651, 53, 54, 55syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑦 𝑧𝑧 𝑦))
5756ord 864 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧𝑧 𝑦))
58 an4 656 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦)))
59 ordtrest2NEW.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
60 rabss 4082 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6261r19.21bi 3249 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐵) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6362an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6463impr 454 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦))) → 𝑧𝐴)
6558, 64sylan2b 594 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧𝐴)
66 brinxp 5767 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6766ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6867notbid 318 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤 𝑧 ↔ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧))
6968rabbidva 3440 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7065, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7124ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
72 rabeq 3448 . . . . . . . . . . . . . . . 16 (dom ( ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7371, 72syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7470, 73eqtr4d 2778 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7513a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → ( ∩ (𝐴 × 𝐴)) ∈ V)
7665, 71eleqtrrd 2842 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴)))
7715ordtopn1 23218 . . . . . . . . . . . . . . 15 ((( ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7875, 76, 77syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7974, 78eqeltrd 2839 . . . . . . . . . . . . 13 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8079anassrs 467 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ (𝑦𝐴𝑧 𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8180expr 456 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑧 𝑦 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8257, 81syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8382rexlimdva 3153 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → (∃𝑦𝐴 ¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8450, 83biimtrid 242 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8545, 84pm2.61dne 3026 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8685rexlimdvaa 3154 . . . . . 6 ((𝜑𝑧𝐵) → (∃𝑥𝐴 𝑥 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8737, 86biimtrid 242 . . . . 5 ((𝜑𝑧𝐵) → (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8833, 87pm2.61d 179 . . . 4 ((𝜑𝑧𝐵) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
898, 88eqeltrd 2839 . . 3 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
9089ralrimiva 3144 . 2 (𝜑 → ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
91 fvex 6920 . . . . . . 7 (Base‘𝐾) ∈ V
9222, 91eqeltri 2835 . . . . . 6 𝐵 ∈ V
9392a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
94 rabexg 5343 . . . . 5 (𝐵 ∈ V → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9593, 94syl 17 . . . 4 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9695ralrimivw 3148 . . 3 (𝜑 → ∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
97 eqid 2735 . . . 4 (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
98 ineq1 4221 . . . . 5 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → (𝑣𝐴) = ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴))
9998eleq1d 2824 . . . 4 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10097, 99ralrnmptw 7114 . . 3 (∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10196, 100syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10290, 101mpbird 257 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  wss 3963  c0 4339   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689  ran crn 5690  cfv 6563  Basecbs 17245  lecple 17305  ordTopcordt 17546   Proset cproset 18350  Posetcpo 18365  Tosetctos 18474  Topctop 22915  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-ple 17318  df-topgen 17490  df-ordt 17548  df-proset 18352  df-poset 18371  df-toset 18475  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by:  ordtrest2NEW  33884
  Copyright terms: Public domain W3C validator