Proof of Theorem ordtrest2NEWlem
Step | Hyp | Ref
| Expression |
1 | | inrab2 4238 |
. . . . 5
⊢ ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) = {𝑤 ∈ (𝐵 ∩ 𝐴) ∣ ¬ 𝑤 ≤ 𝑧} |
2 | | ordtrest2NEW.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | | sseqin2 4146 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
4 | 2, 3 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐵 ∩ 𝐴) = 𝐴) |
6 | | rabeq 3408 |
. . . . . 6
⊢ ((𝐵 ∩ 𝐴) = 𝐴 → {𝑤 ∈ (𝐵 ∩ 𝐴) ∣ ¬ 𝑤 ≤ 𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧}) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → {𝑤 ∈ (𝐵 ∩ 𝐴) ∣ ¬ 𝑤 ≤ 𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧}) |
8 | 1, 7 | syl5eq 2791 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧}) |
9 | | ordtNEW.l |
. . . . . . . . . . . . 13
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
10 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢
(le‘𝐾) ∈
V |
11 | 10 | inex1 5236 |
. . . . . . . . . . . . 13
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
12 | 9, 11 | eqeltri 2835 |
. . . . . . . . . . . 12
⊢ ≤ ∈
V |
13 | 12 | inex1 5236 |
. . . . . . . . . . 11
⊢ ( ≤ ∩
(𝐴 × 𝐴)) ∈ V |
14 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ( ≤ ∩ (𝐴 × 𝐴)) ∈ V) |
15 | | eqid 2738 |
. . . . . . . . . . 11
⊢ dom (
≤
∩ (𝐴 × 𝐴)) = dom ( ≤ ∩ (𝐴 × 𝐴)) |
16 | 15 | ordttopon 22252 |
. . . . . . . . . 10
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ≤ ∩
(𝐴 × 𝐴)))) |
17 | 14, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ (TopOn‘dom (
≤
∩ (𝐴 × 𝐴)))) |
18 | | ordtrest2NEW.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Toset) |
19 | | tospos 18053 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) |
20 | | posprs 17949 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset
) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ Proset ) |
22 | | ordtNEW.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) |
23 | 22, 9 | prsssdm 31769 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
24 | 21, 2, 23 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
25 | 24 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (TopOn‘dom ( ≤ ∩
(𝐴 × 𝐴))) = (TopOn‘𝐴)) |
26 | 17, 25 | eleqtrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ (TopOn‘𝐴)) |
27 | | toponmax 21983 |
. . . . . . . 8
⊢
((ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
30 | | rabid2 3307 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧) |
31 | | eleq1 2826 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} → (𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
32 | 30, 31 | sylbir 234 |
. . . . . 6
⊢
(∀𝑤 ∈
𝐴 ¬ 𝑤 ≤ 𝑧 → (𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
33 | 29, 32 | syl5ibcom 244 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (∀𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
34 | | dfrex2 3166 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤 ≤ 𝑧 ↔ ¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧) |
35 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤 ≤ 𝑧 ↔ 𝑥 ≤ 𝑧)) |
36 | 35 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤 ≤ 𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑧) |
37 | 34, 36 | bitr3i 276 |
. . . . . 6
⊢ (¬
∀𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑧) |
38 | | ordttop 22259 |
. . . . . . . . . . . . 13
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top) |
39 | 14, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ Top) |
40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top) |
41 | | 0opn 21961 |
. . . . . . . . . . 11
⊢
((ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈
(ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∅ ∈ (ordTop‘(
≤
∩ (𝐴 × 𝐴)))) |
43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) → ∅ ∈ (ordTop‘(
≤
∩ (𝐴 × 𝐴)))) |
44 | | eleq1 2826 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} = ∅ → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘(
≤
∩ (𝐴 × 𝐴))))) |
45 | 43, 44 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} = ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
46 | | rabn0 4316 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧) |
47 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑧)) |
48 | 47 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (¬ 𝑤 ≤ 𝑧 ↔ ¬ 𝑦 ≤ 𝑧)) |
49 | 48 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑤 ∈
𝐴 ¬ 𝑤 ≤ 𝑧 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑧) |
50 | 46, 49 | bitri 274 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ≠ ∅ ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑧) |
51 | 18 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ Toset) |
52 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) → 𝐴 ⊆ 𝐵) |
53 | 52 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
54 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
55 | 22, 9 | trleile 31151 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Toset ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ≤ 𝑧 ∨ 𝑧 ≤ 𝑦)) |
56 | 51, 53, 54, 55 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ 𝑧 ∨ 𝑧 ≤ 𝑦)) |
57 | 56 | ord 860 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦 ≤ 𝑧 → 𝑧 ≤ 𝑦)) |
58 | | an4 652 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
59 | | ordtrest2NEW.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
60 | | rabss 4001 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) → 𝑧 ∈ 𝐴)) |
61 | 59, 60 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) → 𝑧 ∈ 𝐴)) |
62 | 61 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) → 𝑧 ∈ 𝐴)) |
63 | 62 | an32s 648 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) → 𝑧 ∈ 𝐴)) |
64 | 63 | impr 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) → 𝑧 ∈ 𝐴) |
65 | 58, 64 | sylan2b 593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → 𝑧 ∈ 𝐴) |
66 | | brinxp 5656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤 ≤ 𝑧 ↔ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧)) |
67 | 66 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝑧 ↔ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧)) |
68 | 67 | notbid 317 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤 ≤ 𝑧 ↔ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧)) |
69 | 68 | rabbidva 3402 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐴 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧}) |
70 | 65, 69 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧}) |
71 | 24 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
72 | | rabeq 3408 |
. . . . . . . . . . . . . . . 16
⊢ (dom (
≤
∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧}) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → {𝑤 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧}) |
74 | 70, 73 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} = {𝑤 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧}) |
75 | 13 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → ( ≤ ∩ (𝐴 × 𝐴)) ∈ V) |
76 | 65, 71 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → 𝑧 ∈ dom ( ≤ ∩ (𝐴 × 𝐴))) |
77 | 15 | ordtopn1 22253 |
. . . . . . . . . . . . . . 15
⊢ ((( ≤ ∩
(𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom ( ≤ ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
78 | 75, 76, 77 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → {𝑤 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ≤ ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
79 | 74, 78 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
80 | 79 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
81 | 80 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑧 ≤ 𝑦 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
82 | 57, 81 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦 ≤ 𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
83 | 82 | rexlimdva 3212 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) → (∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
84 | 50, 83 | syl5bi 241 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ≠ ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
85 | 45, 84 | pm2.61dne 3030 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
86 | 85 | rexlimdvaa 3213 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
87 | 37, 86 | syl5bi 241 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
88 | 33, 87 | pm2.61d 179 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧} ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
89 | 8, 88 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
90 | 89 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
91 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝐾)
∈ V |
92 | 22, 91 | eqeltri 2835 |
. . . . . 6
⊢ 𝐵 ∈ V |
93 | 92 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
94 | | rabexg 5250 |
. . . . 5
⊢ (𝐵 ∈ V → {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∈ V) |
95 | 93, 94 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∈ V) |
96 | 95 | ralrimivw 3108 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∈ V) |
97 | | eqid 2738 |
. . . 4
⊢ (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) = (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) |
98 | | ineq1 4136 |
. . . . 5
⊢ (𝑣 = {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} → (𝑣 ∩ 𝐴) = ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴)) |
99 | 98 | eleq1d 2823 |
. . . 4
⊢ (𝑣 = {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} → ((𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
100 | 97, 99 | ralrnmptw 6952 |
. . 3
⊢
(∀𝑧 ∈
𝐵 {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝐵 ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
101 | 96, 100 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝐵 ({𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧} ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
102 | 90, 101 | mpbird 256 |
1
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |