MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooval2 Structured version   Visualization version   GIF version

Theorem iooval2 13417
Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooval2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iooval2
StepHypRef Expression
1 iooval 13408 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
2 elioore 13414 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
32ssriv 3999 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
41, 3eqsstrrdi 4051 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ⊆ ℝ)
5 dfss2 3981 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ⊆ ℝ ↔ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
64, 5sylib 218 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
7 inrab2 4323 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
8 ressxr 11303 . . . . . 6 ℝ ⊆ ℝ*
9 sseqin2 4231 . . . . . 6 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
108, 9mpbi 230 . . . . 5 (ℝ* ∩ ℝ) = ℝ
1110rabeqi 3447 . . . 4 {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
127, 11eqtri 2763 . . 3 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
136, 12eqtr3di 2790 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
141, 13eqtrd 2775 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  cin 3962  wss 3963   class class class wbr 5148  (class class class)co 7431  cr 11152  *cxr 11292   < clt 11293  (,)cioo 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388
This theorem is referenced by:  elioo2  13425  ioomax  13459  ioopos  13461  dfioo2  13487
  Copyright terms: Public domain W3C validator