MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooval2 Structured version   Visualization version   GIF version

Theorem iooval2 13346
Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooval2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iooval2
StepHypRef Expression
1 iooval 13337 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
2 elioore 13343 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
32ssriv 3953 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
41, 3eqsstrrdi 3995 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ⊆ ℝ)
5 dfss2 3935 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ⊆ ℝ ↔ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
64, 5sylib 218 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
7 inrab2 4283 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
8 ressxr 11225 . . . . . 6 ℝ ⊆ ℝ*
9 sseqin2 4189 . . . . . 6 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
108, 9mpbi 230 . . . . 5 (ℝ* ∩ ℝ) = ℝ
1110rabeqi 3422 . . . 4 {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
127, 11eqtri 2753 . . 3 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}
136, 12eqtr3di 2780 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
141, 13eqtrd 2765 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  cin 3916  wss 3917   class class class wbr 5110  (class class class)co 7390  cr 11074  *cxr 11214   < clt 11215  (,)cioo 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317
This theorem is referenced by:  elioo2  13354  ioomax  13390  ioopos  13392  dfioo2  13418
  Copyright terms: Public domain W3C validator