![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooval2 | Structured version Visualization version GIF version |
Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
iooval2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 13381 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | elioore 13387 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ) | |
3 | 2 | ssriv 3984 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ ℝ |
4 | 1, 3 | eqsstrrdi 4035 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ⊆ ℝ) |
5 | df-ss 3964 | . . . 4 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ⊆ ℝ ↔ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
7 | inrab2 4308 | . . . 4 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} | |
8 | ressxr 11289 | . . . . . 6 ⊢ ℝ ⊆ ℝ* | |
9 | sseqin2 4215 | . . . . . 6 ⊢ (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ) | |
10 | 8, 9 | mpbi 229 | . . . . 5 ⊢ (ℝ* ∩ ℝ) = ℝ |
11 | 10 | rabeqi 3442 | . . . 4 ⊢ {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} |
12 | 7, 11 | eqtri 2756 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} |
13 | 6, 12 | eqtr3di 2783 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
14 | 1, 13 | eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3429 ∩ cin 3946 ⊆ wss 3947 class class class wbr 5148 (class class class)co 7420 ℝcr 11138 ℝ*cxr 11278 < clt 11279 (,)cioo 13357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-pre-lttri 11213 ax-pre-lttrn 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-ioo 13361 |
This theorem is referenced by: elioo2 13398 ioomax 13432 ioopos 13434 dfioo2 13460 |
Copyright terms: Public domain | W3C validator |