Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmatALTbas Structured version   Visualization version   GIF version

Theorem dmatALTbas 45711
Description: The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatALTval.a 𝐴 = (𝑁 Mat 𝑅)
dmatALTval.b 𝐵 = (Base‘𝐴)
dmatALTval.0 0 = (0g𝑅)
dmatALTval.d 𝐷 = (𝑁 DMatALT 𝑅)
Assertion
Ref Expression
dmatALTbas ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatALTbas
StepHypRef Expression
1 dmatALTval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 dmatALTval.b . . . 4 𝐵 = (Base‘𝐴)
3 dmatALTval.0 . . . 4 0 = (0g𝑅)
4 dmatALTval.d . . . 4 𝐷 = (𝑁 DMatALT 𝑅)
51, 2, 3, 4dmatALTval 45710 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
65fveq2d 6775 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = (Base‘(𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})))
72fvexi 6785 . . . 4 𝐵 ∈ V
8 rabexg 5259 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
97, 8mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
10 eqid 2740 . . . 4 (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
1110, 2ressbas 16945 . . 3 ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V → ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})))
129, 11syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})))
13 inrab2 4247 . . 3 ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ (𝐵𝐵) ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}
14 inidm 4158 . . . 4 (𝐵𝐵) = 𝐵
15 rabeq 3417 . . . 4 ((𝐵𝐵) = 𝐵 → {𝑚 ∈ (𝐵𝐵) ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
1614, 15mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ (𝐵𝐵) ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
1713, 16eqtrid 2792 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
186, 12, 173eqtr2d 2786 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  wral 3066  {crab 3070  Vcvv 3431  cin 3891  cfv 6432  (class class class)co 7271  Fincfn 8716  Basecbs 16910  s cress 16939  0gc0g 17148   Mat cmat 21552   DMatALT cdmatalt 45706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-1cn 10930  ax-addcl 10932
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-nn 11974  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-dmatalt 45708
This theorem is referenced by:  dmatALTbasel  45712  dmatbas  45713
  Copyright terms: Public domain W3C validator