Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmatALTbas Structured version   Visualization version   GIF version

Theorem dmatALTbas 48394
Description: The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatALTval.a 𝐴 = (𝑁 Mat 𝑅)
dmatALTval.b 𝐵 = (Base‘𝐴)
dmatALTval.0 0 = (0g𝑅)
dmatALTval.d 𝐷 = (𝑁 DMatALT 𝑅)
Assertion
Ref Expression
dmatALTbas ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatALTbas
StepHypRef Expression
1 dmatALTval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 dmatALTval.b . . . 4 𝐵 = (Base‘𝐴)
3 dmatALTval.0 . . . 4 0 = (0g𝑅)
4 dmatALTval.d . . . 4 𝐷 = (𝑁 DMatALT 𝑅)
51, 2, 3, 4dmatALTval 48393 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
65fveq2d 6865 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = (Base‘(𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})))
72fvexi 6875 . . . 4 𝐵 ∈ V
8 rabexg 5295 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
97, 8mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
10 eqid 2730 . . . 4 (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
1110, 2ressbas 17213 . . 3 ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V → ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})))
129, 11syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})))
13 inrab2 4283 . . 3 ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ (𝐵𝐵) ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}
14 inidm 4193 . . . 4 (𝐵𝐵) = 𝐵
15 rabeq 3423 . . . 4 ((𝐵𝐵) = 𝐵 → {𝑚 ∈ (𝐵𝐵) ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
1614, 15mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ (𝐵𝐵) ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
1713, 16eqtrid 2777 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
186, 12, 173eqtr2d 2771 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cin 3916  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  s cress 17207  0gc0g 17409   Mat cmat 22301   DMatALT cdmatalt 48389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-dmatalt 48391
This theorem is referenced by:  dmatALTbasel  48395  dmatbas  48396
  Copyright terms: Public domain W3C validator