| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmatALTbas | Structured version Visualization version GIF version | ||
| Description: The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmatALTval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| dmatALTval.b | ⊢ 𝐵 = (Base‘𝐴) |
| dmatALTval.0 | ⊢ 0 = (0g‘𝑅) |
| dmatALTval.d | ⊢ 𝐷 = (𝑁 DMatALT 𝑅) |
| Ref | Expression |
|---|---|
| dmatALTbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmatALTval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | dmatALTval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | dmatALTval.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | dmatALTval.d | . . . 4 ⊢ 𝐷 = (𝑁 DMatALT 𝑅) | |
| 5 | 1, 2, 3, 4 | dmatALTval 48438 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
| 7 | 2 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 8 | rabexg 5275 | . . . 4 ⊢ (𝐵 ∈ V → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V) |
| 10 | eqid 2731 | . . . 4 ⊢ (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | |
| 11 | 10, 2 | ressbas 17147 | . . 3 ⊢ ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
| 13 | inrab2 4267 | . . 3 ⊢ ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} | |
| 14 | inidm 4177 | . . . 4 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 15 | rabeq 3409 | . . . 4 ⊢ ((𝐵 ∩ 𝐵) = 𝐵 → {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | |
| 16 | 14, 15 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 17 | 13, 16 | eqtrid 2778 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 18 | 6, 12, 17 | 3eqtr2d 2772 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 Vcvv 3436 ∩ cin 3901 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17120 ↾s cress 17141 0gc0g 17343 Mat cmat 22323 DMatALT cdmatalt 48434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-dmatalt 48436 |
| This theorem is referenced by: dmatALTbasel 48440 dmatbas 48441 |
| Copyright terms: Public domain | W3C validator |