![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmatALTbas | Structured version Visualization version GIF version |
Description: The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
dmatALTval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatALTval.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatALTval.0 | ⊢ 0 = (0g‘𝑅) |
dmatALTval.d | ⊢ 𝐷 = (𝑁 DMatALT 𝑅) |
Ref | Expression |
---|---|
dmatALTbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatALTval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatALTval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatALTval.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | dmatALTval.d | . . . 4 ⊢ 𝐷 = (𝑁 DMatALT 𝑅) | |
5 | 1, 2, 3, 4 | dmatALTval 46471 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
6 | 5 | fveq2d 6846 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
7 | 2 | fvexi 6856 | . . . 4 ⊢ 𝐵 ∈ V |
8 | rabexg 5288 | . . . 4 ⊢ (𝐵 ∈ V → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V) | |
9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V) |
10 | eqid 2736 | . . . 4 ⊢ (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | |
11 | 10, 2 | ressbas 17118 | . . 3 ⊢ ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
12 | 9, 11 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
13 | inrab2 4267 | . . 3 ⊢ ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} | |
14 | inidm 4178 | . . . 4 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
15 | rabeq 3421 | . . . 4 ⊢ ((𝐵 ∩ 𝐵) = 𝐵 → {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | |
16 | 14, 15 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
17 | 13, 16 | eqtrid 2788 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
18 | 6, 12, 17 | 3eqtr2d 2782 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3407 Vcvv 3445 ∩ cin 3909 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 Basecbs 17083 ↾s cress 17112 0gc0g 17321 Mat cmat 21754 DMatALT cdmatalt 46467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-1cn 11109 ax-addcl 11111 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-nn 12154 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-dmatalt 46469 |
This theorem is referenced by: dmatALTbasel 46473 dmatbas 46474 |
Copyright terms: Public domain | W3C validator |