| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmatALTbas | Structured version Visualization version GIF version | ||
| Description: The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmatALTval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| dmatALTval.b | ⊢ 𝐵 = (Base‘𝐴) |
| dmatALTval.0 | ⊢ 0 = (0g‘𝑅) |
| dmatALTval.d | ⊢ 𝐷 = (𝑁 DMatALT 𝑅) |
| Ref | Expression |
|---|---|
| dmatALTbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmatALTval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | dmatALTval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | dmatALTval.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | dmatALTval.d | . . . 4 ⊢ 𝐷 = (𝑁 DMatALT 𝑅) | |
| 5 | 1, 2, 3, 4 | dmatALTval 48386 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
| 6 | 5 | fveq2d 6830 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
| 7 | 2 | fvexi 6840 | . . . 4 ⊢ 𝐵 ∈ V |
| 8 | rabexg 5279 | . . . 4 ⊢ (𝐵 ∈ V → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V) |
| 10 | eqid 2729 | . . . 4 ⊢ (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | |
| 11 | 10, 2 | ressbas 17165 | . . 3 ⊢ ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = (Base‘(𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}))) |
| 13 | inrab2 4270 | . . 3 ⊢ ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} | |
| 14 | inidm 4180 | . . . 4 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 15 | rabeq 3411 | . . . 4 ⊢ ((𝐵 ∩ 𝐵) = 𝐵 → {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | |
| 16 | 14, 15 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → {𝑚 ∈ (𝐵 ∩ 𝐵) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 17 | 13, 16 | eqtrid 2776 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ({𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∩ 𝐵) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 18 | 6, 12, 17 | 3eqtr2d 2770 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3396 Vcvv 3438 ∩ cin 3904 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17138 ↾s cress 17159 0gc0g 17361 Mat cmat 22310 DMatALT cdmatalt 48382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-dmatalt 48384 |
| This theorem is referenced by: dmatALTbasel 48388 dmatbas 48389 |
| Copyright terms: Public domain | W3C validator |