Proof of Theorem ordtrest2lem
Step | Hyp | Ref
| Expression |
1 | | inrab2 4238 |
. . . . 5
⊢ ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} |
2 | | ordtrest2.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
3 | | sseqin2 4146 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) |
4 | 2, 3 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∩ 𝐴) = 𝐴) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
6 | 5 | rabeqdv 3409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
7 | 1, 6 | eqtrid 2790 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
8 | | ordtrest2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ TosetRel ) |
9 | | inex1g 5238 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
10 | 8, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
11 | | eqid 2738 |
. . . . . . . . . . 11
⊢ dom
(𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴)) |
12 | 11 | ordttopon 22252 |
. . . . . . . . . 10
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴)))) |
13 | 10, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴)))) |
14 | | tsrps 18220 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈
PosetRel) |
15 | 8, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ PosetRel) |
16 | | ordtrest2.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = dom 𝑅 |
17 | 16 | psssdm 18215 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
18 | 15, 2, 17 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
19 | 18 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴)) |
20 | 13, 19 | eleqtrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴)) |
21 | | toponmax 21983 |
. . . . . . . 8
⊢
((ordTop‘(𝑅
∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
22 | 20, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
24 | | rabid2 3307 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
25 | | eleq1 2826 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
26 | 24, 25 | sylbir 234 |
. . . . . 6
⊢
(∀𝑤 ∈
𝐴 ¬ 𝑤𝑅𝑧 → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
27 | 23, 26 | syl5ibcom 244 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
28 | | dfrex2 3166 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤𝑅𝑧 ↔ ¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
29 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
30 | 29 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝑧) |
31 | 28, 30 | bitr3i 276 |
. . . . . 6
⊢ (¬
∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝑧) |
32 | | ordttop 22259 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
33 | 10, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
34 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
35 | | 0opn 21961 |
. . . . . . . . . . 11
⊢
((ordTop‘(𝑅
∩ (𝐴 × 𝐴))) ∈ Top → ∅
∈ (ordTop‘(𝑅
∩ (𝐴 × 𝐴)))) |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
37 | 36 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
38 | | eleq1 2826 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∅ ∈
(ordTop‘(𝑅 ∩
(𝐴 × 𝐴))))) |
39 | 37, 38 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
40 | | rabn0 4316 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
41 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
42 | 41 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧)) |
43 | 42 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑤 ∈
𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) |
44 | 40, 43 | bitri 274 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) |
45 | 8 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑅 ∈ TosetRel ) |
46 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝐴 ⊆ 𝑋) |
47 | 46 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑋) |
48 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑋) |
49 | 16 | tsrlin 18218 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
50 | 45, 47, 48, 49 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
51 | 50 | ord 860 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦𝑅𝑧 → 𝑧𝑅𝑦)) |
52 | | an4 652 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦))) |
53 | | ordtrest2.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) |
54 | | rabss 4001 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
55 | 53, 54 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝑋 ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
56 | 55 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑋) → ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
57 | 56 | an32s 648 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
58 | 57 | impr 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ 𝐴) |
59 | 52, 58 | sylan2b 593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ 𝐴) |
60 | | brinxp 5656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤𝑅𝑧 ↔ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
61 | 60 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑤𝑅𝑧 ↔ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
62 | 61 | notbid 317 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
63 | 62 | rabbidva 3402 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐴 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
64 | 59, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
65 | 18 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
66 | 65 | rabeqdv 3409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
67 | 64, 66 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
68 | 10 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
69 | 59, 65 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
70 | 11 | ordtopn1 22253 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
71 | 68, 69, 70 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
72 | 67, 71 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
73 | 72 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
74 | 73 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑧𝑅𝑦 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
75 | 51, 74 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
76 | 75 | rexlimdva 3212 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
77 | 44, 76 | syl5bi 241 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
78 | 39, 77 | pm2.61dne 3030 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
79 | 78 | rexlimdvaa 3213 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∃𝑥 ∈ 𝐴 𝑥𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
80 | 31, 79 | syl5bi 241 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
81 | 27, 80 | pm2.61d 179 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
82 | 7, 81 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
83 | 82 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
84 | 8 | dmexd 7726 |
. . . . . 6
⊢ (𝜑 → dom 𝑅 ∈ V) |
85 | 16, 84 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
86 | | rabexg 5250 |
. . . . 5
⊢ (𝑋 ∈ V → {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
87 | 85, 86 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
88 | 87 | ralrimivw 3108 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
89 | | eqid 2738 |
. . . 4
⊢ (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧}) = (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧}) |
90 | | ineq1 4136 |
. . . . 5
⊢ (𝑣 = {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} → (𝑣 ∩ 𝐴) = ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴)) |
91 | 90 | eleq1d 2823 |
. . . 4
⊢ (𝑣 = {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} → ((𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
92 | 89, 91 | ralrnmptw 6952 |
. . 3
⊢
(∀𝑧 ∈
𝑋 {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
93 | 88, 92 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
94 | 83, 93 | mpbird 256 |
1
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |