MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest2lem Structured version   Visualization version   GIF version

Theorem ordtrest2lem 22352
Description: Lemma for ordtrest2 22353. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrest2.1 𝑋 = dom 𝑅
ordtrest2.2 (𝜑𝑅 ∈ TosetRel )
ordtrest2.3 (𝜑𝐴𝑋)
ordtrest2.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2lem (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝜑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑅,𝑤,𝑥,𝑦,𝑧   𝑣,𝑋,𝑤,𝑥,𝑦,𝑧

Proof of Theorem ordtrest2lem
StepHypRef Expression
1 inrab2 4243 . . . . 5 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧}
2 ordtrest2.3 . . . . . . . 8 (𝜑𝐴𝑋)
3 sseqin2 4151 . . . . . . . 8 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
42, 3sylib 217 . . . . . . 7 (𝜑 → (𝑋𝐴) = 𝐴)
54adantr 481 . . . . . 6 ((𝜑𝑧𝑋) → (𝑋𝐴) = 𝐴)
65rabeqdv 3418 . . . . 5 ((𝜑𝑧𝑋) → {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
71, 6eqtrid 2790 . . . 4 ((𝜑𝑧𝑋) → ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
8 ordtrest2.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ TosetRel )
9 inex1g 5245 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
108, 9syl 17 . . . . . . . . . 10 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
11 eqid 2738 . . . . . . . . . . 11 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
1211ordttopon 22342 . . . . . . . . . 10 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
1310, 12syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
14 tsrps 18303 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
158, 14syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ PosetRel)
16 ordtrest2.1 . . . . . . . . . . . 12 𝑋 = dom 𝑅
1716psssdm 18298 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
1815, 2, 17syl2anc 584 . . . . . . . . . 10 (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
1918fveq2d 6780 . . . . . . . . 9 (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2013, 19eleqtrd 2841 . . . . . . . 8 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
21 toponmax 22073 . . . . . . . 8 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
2220, 21syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
2322adantr 481 . . . . . 6 ((𝜑𝑧𝑋) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
24 rabid2 3313 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧)
25 eleq1 2826 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
2624, 25sylbir 234 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
2723, 26syl5ibcom 244 . . . . 5 ((𝜑𝑧𝑋) → (∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
28 dfrex2 3169 . . . . . . 7 (∃𝑤𝐴 𝑤𝑅𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧)
29 breq1 5079 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
3029cbvrexvw 3383 . . . . . . 7 (∃𝑤𝐴 𝑤𝑅𝑧 ↔ ∃𝑥𝐴 𝑥𝑅𝑧)
3128, 30bitr3i 276 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑥𝐴 𝑥𝑅𝑧)
32 ordttop 22349 . . . . . . . . . . . . 13 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
3310, 32syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
3433adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
35 0opn 22051 . . . . . . . . . . 11 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
3634, 35syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
3736adantr 481 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
38 eleq1 2826 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
3937, 38syl5ibrcom 246 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
40 rabn0 4321 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤𝑅𝑧)
41 breq1 5079 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
4241notbid 318 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧))
4342cbvrexvw 3383 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦𝑅𝑧)
4440, 43bitri 274 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦𝑅𝑧)
458ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑅 ∈ TosetRel )
462ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → 𝐴𝑋)
4746sselda 3922 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑦𝑋)
48 simpllr 773 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑧𝑋)
4916tsrlin 18301 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑅𝑧𝑧𝑅𝑦))
5045, 47, 48, 49syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (𝑦𝑅𝑧𝑧𝑅𝑦))
5150ord 861 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦𝑅𝑧𝑧𝑅𝑦))
52 an4 653 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑧𝑧𝑅𝑦)))
53 ordtrest2.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
54 rabss 4006 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝑋 ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5553, 54sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝑋 ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5655r19.21bi 3134 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝑋) → ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5756an32s 649 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5857impr 455 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑧𝑧𝑅𝑦))) → 𝑧𝐴)
5952, 58sylan2b 594 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → 𝑧𝐴)
60 brinxp 5667 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6160ancoms 459 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤𝑅𝑧𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6261notbid 318 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6362rabbidva 3412 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6459, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6518ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
6665rabeqdv 3418 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6764, 66eqtr4d 2781 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6810ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
6959, 65eleqtrrd 2842 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
7011ordtopn1 22343 . . . . . . . . . . . . . . 15 (((𝑅 ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7168, 69, 70syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7267, 71eqeltrd 2839 . . . . . . . . . . . . 13 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7372anassrs 468 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ (𝑦𝐴𝑧𝑅𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7473expr 457 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (𝑧𝑅𝑦 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7551, 74syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7675rexlimdva 3212 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → (∃𝑦𝐴 ¬ 𝑦𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7744, 76syl5bi 241 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7839, 77pm2.61dne 3031 . . . . . . 7 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7978rexlimdvaa 3213 . . . . . 6 ((𝜑𝑧𝑋) → (∃𝑥𝐴 𝑥𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8031, 79syl5bi 241 . . . . 5 ((𝜑𝑧𝑋) → (¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8127, 80pm2.61d 179 . . . 4 ((𝜑𝑧𝑋) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
827, 81eqeltrd 2839 . . 3 ((𝜑𝑧𝑋) → ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8382ralrimiva 3103 . 2 (𝜑 → ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
848dmexd 7752 . . . . . 6 (𝜑 → dom 𝑅 ∈ V)
8516, 84eqeltrid 2843 . . . . 5 (𝜑𝑋 ∈ V)
86 rabexg 5257 . . . . 5 (𝑋 ∈ V → {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
8785, 86syl 17 . . . 4 (𝜑 → {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
8887ralrimivw 3104 . . 3 (𝜑 → ∀𝑧𝑋 {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
89 eqid 2738 . . . 4 (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) = (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})
90 ineq1 4141 . . . . 5 (𝑣 = {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} → (𝑣𝐴) = ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴))
9190eleq1d 2823 . . . 4 (𝑣 = {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9289, 91ralrnmptw 6972 . . 3 (∀𝑧𝑋 {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9388, 92syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9483, 93mpbird 256 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3431  cin 3887  wss 3888  c0 4258   class class class wbr 5076  cmpt 5159   × cxp 5589  dom cdm 5591  ran crn 5592  cfv 6435  ordTopcordt 17208  PosetRelcps 18280   TosetRel ctsr 18281  Topctop 22040  TopOnctopon 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-om 7713  df-1o 8295  df-er 8496  df-en 8732  df-fin 8735  df-fi 9168  df-topgen 17152  df-ordt 17210  df-ps 18282  df-tsr 18283  df-top 22041  df-topon 22058  df-bases 22094
This theorem is referenced by:  ordtrest2  22353
  Copyright terms: Public domain W3C validator