Proof of Theorem ordtrest2lem
| Step | Hyp | Ref
| Expression |
| 1 | | inrab2 4317 |
. . . . 5
⊢ ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} |
| 2 | | ordtrest2.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| 3 | | sseqin2 4223 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) |
| 4 | 2, 3 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∩ 𝐴) = 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 6 | 5 | rabeqdv 3452 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
| 7 | 1, 6 | eqtrid 2789 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
| 8 | | ordtrest2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ TosetRel ) |
| 9 | | inex1g 5319 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 11 | | eqid 2737 |
. . . . . . . . . . 11
⊢ dom
(𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴)) |
| 12 | 11 | ordttopon 23201 |
. . . . . . . . . 10
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴)))) |
| 13 | 10, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴)))) |
| 14 | | tsrps 18632 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈
PosetRel) |
| 15 | 8, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ PosetRel) |
| 16 | | ordtrest2.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = dom 𝑅 |
| 17 | 16 | psssdm 18627 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| 18 | 15, 2, 17 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| 19 | 18 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴)) |
| 20 | 13, 19 | eleqtrd 2843 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴)) |
| 21 | | toponmax 22932 |
. . . . . . . 8
⊢
((ordTop‘(𝑅
∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 22 | 20, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 24 | | rabid2 3470 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| 25 | | eleq1 2829 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 26 | 24, 25 | sylbir 235 |
. . . . . 6
⊢
(∀𝑤 ∈
𝐴 ¬ 𝑤𝑅𝑧 → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 27 | 23, 26 | syl5ibcom 245 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 28 | | dfrex2 3073 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤𝑅𝑧 ↔ ¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| 29 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
| 30 | 29 | cbvrexvw 3238 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝑧) |
| 31 | 28, 30 | bitr3i 277 |
. . . . . 6
⊢ (¬
∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝑧) |
| 32 | | ordttop 23208 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
| 33 | 10, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
| 35 | | 0opn 22910 |
. . . . . . . . . . 11
⊢
((ordTop‘(𝑅
∩ (𝐴 × 𝐴))) ∈ Top → ∅
∈ (ordTop‘(𝑅
∩ (𝐴 × 𝐴)))) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 37 | 36 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 38 | | eleq1 2829 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∅ ∈
(ordTop‘(𝑅 ∩
(𝐴 × 𝐴))))) |
| 39 | 37, 38 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 40 | | rabn0 4389 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| 41 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
| 42 | 41 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧)) |
| 43 | 42 | cbvrexvw 3238 |
. . . . . . . . . 10
⊢
(∃𝑤 ∈
𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) |
| 44 | 40, 43 | bitri 275 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) |
| 45 | 8 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑅 ∈ TosetRel ) |
| 46 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝐴 ⊆ 𝑋) |
| 47 | 46 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑋) |
| 48 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑋) |
| 49 | 16 | tsrlin 18630 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 50 | 45, 47, 48, 49 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 51 | 50 | ord 865 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦𝑅𝑧 → 𝑧𝑅𝑦)) |
| 52 | | an4 656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦))) |
| 53 | | ordtrest2.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) |
| 54 | | rabss 4072 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 55 | 53, 54 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝑋 ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 56 | 55 | r19.21bi 3251 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑋) → ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 57 | 56 | an32s 652 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 58 | 57 | impr 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ 𝐴) |
| 59 | 52, 58 | sylan2b 594 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ 𝐴) |
| 60 | | brinxp 5764 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤𝑅𝑧 ↔ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
| 61 | 60 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑤𝑅𝑧 ↔ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
| 62 | 61 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
| 63 | 62 | rabbidva 3443 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐴 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 64 | 59, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 65 | 18 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| 66 | 65 | rabeqdv 3452 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 67 | 64, 66 | eqtr4d 2780 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 68 | 10 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 69 | 59, 65 | eleqtrrd 2844 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
| 70 | 11 | ordtopn1 23202 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 71 | 68, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 72 | 67, 71 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 73 | 72 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 74 | 73 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑧𝑅𝑦 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 75 | 51, 74 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 76 | 75 | rexlimdva 3155 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 77 | 44, 76 | biimtrid 242 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 78 | 39, 77 | pm2.61dne 3028 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 79 | 78 | rexlimdvaa 3156 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∃𝑥 ∈ 𝐴 𝑥𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 80 | 31, 79 | biimtrid 242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 81 | 27, 80 | pm2.61d 179 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 82 | 7, 81 | eqeltrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 83 | 82 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 84 | 8 | dmexd 7925 |
. . . . . 6
⊢ (𝜑 → dom 𝑅 ∈ V) |
| 85 | 16, 84 | eqeltrid 2845 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
| 86 | | rabexg 5337 |
. . . . 5
⊢ (𝑋 ∈ V → {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
| 87 | 85, 86 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
| 88 | 87 | ralrimivw 3150 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
| 89 | | eqid 2737 |
. . . 4
⊢ (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧}) = (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧}) |
| 90 | | ineq1 4213 |
. . . . 5
⊢ (𝑣 = {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} → (𝑣 ∩ 𝐴) = ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴)) |
| 91 | 90 | eleq1d 2826 |
. . . 4
⊢ (𝑣 = {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} → ((𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 92 | 89, 91 | ralrnmptw 7114 |
. . 3
⊢
(∀𝑧 ∈
𝑋 {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 93 | 88, 92 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 94 | 83, 93 | mpbird 257 |
1
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |