Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest2lem Structured version   Visualization version   GIF version

Theorem ordtrest2lem 21811
 Description: Lemma for ordtrest2 21812. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrest2.1 𝑋 = dom 𝑅
ordtrest2.2 (𝜑𝑅 ∈ TosetRel )
ordtrest2.3 (𝜑𝐴𝑋)
ordtrest2.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2lem (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝜑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑅,𝑤,𝑥,𝑦,𝑧   𝑣,𝑋,𝑤,𝑥,𝑦,𝑧

Proof of Theorem ordtrest2lem
StepHypRef Expression
1 inrab2 4231 . . . . 5 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧}
2 ordtrest2.3 . . . . . . . 8 (𝜑𝐴𝑋)
3 sseqin2 4145 . . . . . . . 8 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
42, 3sylib 221 . . . . . . 7 (𝜑 → (𝑋𝐴) = 𝐴)
54adantr 484 . . . . . 6 ((𝜑𝑧𝑋) → (𝑋𝐴) = 𝐴)
65rabeqdv 3435 . . . . 5 ((𝜑𝑧𝑋) → {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
71, 6syl5eq 2848 . . . 4 ((𝜑𝑧𝑋) → ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
8 ordtrest2.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ TosetRel )
9 inex1g 5190 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
108, 9syl 17 . . . . . . . . . 10 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
11 eqid 2801 . . . . . . . . . . 11 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
1211ordttopon 21801 . . . . . . . . . 10 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
1310, 12syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
14 tsrps 17826 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
158, 14syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ PosetRel)
16 ordtrest2.1 . . . . . . . . . . . 12 𝑋 = dom 𝑅
1716psssdm 17821 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
1815, 2, 17syl2anc 587 . . . . . . . . . 10 (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
1918fveq2d 6653 . . . . . . . . 9 (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2013, 19eleqtrd 2895 . . . . . . . 8 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
21 toponmax 21534 . . . . . . . 8 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
2220, 21syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
2322adantr 484 . . . . . 6 ((𝜑𝑧𝑋) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
24 rabid2 3337 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧)
25 eleq1 2880 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
2624, 25sylbir 238 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
2723, 26syl5ibcom 248 . . . . 5 ((𝜑𝑧𝑋) → (∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
28 dfrex2 3205 . . . . . . 7 (∃𝑤𝐴 𝑤𝑅𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧)
29 breq1 5036 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
3029cbvrexvw 3400 . . . . . . 7 (∃𝑤𝐴 𝑤𝑅𝑧 ↔ ∃𝑥𝐴 𝑥𝑅𝑧)
3128, 30bitr3i 280 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑥𝐴 𝑥𝑅𝑧)
32 ordttop 21808 . . . . . . . . . . . . 13 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
3310, 32syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
3433adantr 484 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
35 0opn 21512 . . . . . . . . . . 11 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
3634, 35syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
3736adantr 484 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
38 eleq1 2880 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
3937, 38syl5ibrcom 250 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
40 rabn0 4296 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤𝑅𝑧)
41 breq1 5036 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
4241notbid 321 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧))
4342cbvrexvw 3400 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦𝑅𝑧)
4440, 43bitri 278 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦𝑅𝑧)
458ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑅 ∈ TosetRel )
462ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → 𝐴𝑋)
4746sselda 3918 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑦𝑋)
48 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑧𝑋)
4916tsrlin 17824 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑅𝑧𝑧𝑅𝑦))
5045, 47, 48, 49syl3anc 1368 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (𝑦𝑅𝑧𝑧𝑅𝑦))
5150ord 861 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦𝑅𝑧𝑧𝑅𝑦))
52 an4 655 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑧𝑧𝑅𝑦)))
53 ordtrest2.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
54 rabss 4002 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝑋 ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5553, 54sylib 221 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝑋 ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5655r19.21bi 3176 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝑋) → ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5756an32s 651 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5857impr 458 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑧𝑧𝑅𝑦))) → 𝑧𝐴)
5952, 58sylan2b 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → 𝑧𝐴)
60 brinxp 5598 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6160ancoms 462 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤𝑅𝑧𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6261notbid 321 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6362rabbidva 3428 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6459, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6518ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
6665rabeqdv 3435 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6764, 66eqtr4d 2839 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6810ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
6959, 65eleqtrrd 2896 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
7011ordtopn1 21802 . . . . . . . . . . . . . . 15 (((𝑅 ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7168, 69, 70syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7267, 71eqeltrd 2893 . . . . . . . . . . . . 13 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7372anassrs 471 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ (𝑦𝐴𝑧𝑅𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7473expr 460 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (𝑧𝑅𝑦 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7551, 74syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7675rexlimdva 3246 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → (∃𝑦𝐴 ¬ 𝑦𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7744, 76syl5bi 245 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7839, 77pm2.61dne 3076 . . . . . . 7 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7978rexlimdvaa 3247 . . . . . 6 ((𝜑𝑧𝑋) → (∃𝑥𝐴 𝑥𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8031, 79syl5bi 245 . . . . 5 ((𝜑𝑧𝑋) → (¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8127, 80pm2.61d 182 . . . 4 ((𝜑𝑧𝑋) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
827, 81eqeltrd 2893 . . 3 ((𝜑𝑧𝑋) → ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8382ralrimiva 3152 . 2 (𝜑 → ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
848dmexd 7600 . . . . . 6 (𝜑 → dom 𝑅 ∈ V)
8516, 84eqeltrid 2897 . . . . 5 (𝜑𝑋 ∈ V)
86 rabexg 5201 . . . . 5 (𝑋 ∈ V → {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
8785, 86syl 17 . . . 4 (𝜑 → {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
8887ralrimivw 3153 . . 3 (𝜑 → ∀𝑧𝑋 {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
89 eqid 2801 . . . 4 (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) = (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})
90 ineq1 4134 . . . . 5 (𝑣 = {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} → (𝑣𝐴) = ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴))
9190eleq1d 2877 . . . 4 (𝑣 = {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9289, 91ralrnmptw 6841 . . 3 (∀𝑧𝑋 {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9388, 92syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9483, 93mpbird 260 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  {crab 3113  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033   ↦ cmpt 5113   × cxp 5521  dom cdm 5523  ran crn 5524  ‘cfv 6328  ordTopcordt 16767  PosetRelcps 17803   TosetRel ctsr 17804  Topctop 21501  TopOnctopon 21518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-fin 8500  df-fi 8863  df-topgen 16712  df-ordt 16769  df-ps 17805  df-tsr 17806  df-top 21502  df-topon 21519  df-bases 21554 This theorem is referenced by:  ordtrest2  21812
 Copyright terms: Public domain W3C validator