MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Visualization version   GIF version

Theorem smuval2 16390
Description: The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smuval2.m (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
Assertion
Ref Expression
smuval2 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smuval2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2 (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
2 fveq2 6822 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝑃𝑥) = (𝑃‘(𝑁 + 1)))
32eleq2d 2817 . . . . 5 (𝑥 = (𝑁 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
43bibi2d 342 . . . 4 (𝑥 = (𝑁 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
54imbi2d 340 . . 3 (𝑥 = (𝑁 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))))
6 fveq2 6822 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
76eleq2d 2817 . . . . 5 (𝑥 = 𝑘 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑘)))
87bibi2d 342 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
98imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)))))
10 fveq2 6822 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
1110eleq2d 2817 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))
1211bibi2d 342 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
1312imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
14 fveq2 6822 . . . . . 6 (𝑥 = 𝑀 → (𝑃𝑥) = (𝑃𝑀))
1514eleq2d 2817 . . . . 5 (𝑥 = 𝑀 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑀)))
1615bibi2d 342 . . . 4 (𝑥 = 𝑀 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1716imbi2d 340 . . 3 (𝑥 = 𝑀 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))))
18 smuval.a . . . 4 (𝜑𝐴 ⊆ ℕ0)
19 smuval.b . . . 4 (𝜑𝐵 ⊆ ℕ0)
20 smuval.p . . . 4 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21 smuval.n . . . 4 (𝜑𝑁 ∈ ℕ0)
2218, 19, 20, 21smuval 16389 . . 3 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
2318adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐴 ⊆ ℕ0)
2419adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐵 ⊆ ℕ0)
25 peano2nn0 12418 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2621, 25syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℕ0)
27 eluznn0 12812 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2826, 27sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2923, 24, 20, 28smupp1 16388 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3029eleq2d 2817 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
3123, 24, 20smupf 16386 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑃:ℕ0⟶𝒫 ℕ0)
3231, 28ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ∈ 𝒫 ℕ0)
3332elpwid 4559 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ⊆ ℕ0)
34 ssrab2 4030 . . . . . . . . . . . . . 14 {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0
3534a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0)
3626adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
3733, 35, 36sadeq 16380 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))))
38 inrab2 4267 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}
39 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))))
4039elin1d 4154 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
4140nn0red 12440 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℝ)
4221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℕ0)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
4443nn0red 12440 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℝ)
45 1red 11110 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 1 ∈ ℝ)
4644, 45readdcld 11138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
4728adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
4847nn0red 12440 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℝ)
4939elin2d 4155 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (0..^(𝑁 + 1)))
50 elfzolt2 13565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (0..^(𝑁 + 1)) → 𝑛 < (𝑁 + 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < (𝑁 + 1))
52 eluzle 12742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑘)
5441, 46, 48, 51, 53ltletrd 11270 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < 𝑘)
5541, 48ltnled 11257 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑛 < 𝑘 ↔ ¬ 𝑘𝑛))
5654, 55mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ 𝑘𝑛)
5724adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝐵 ⊆ ℕ0)
5857sseld 3933 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → (𝑛𝑘) ∈ ℕ0))
59 nn0ge0 12403 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛𝑘) ∈ ℕ0 → 0 ≤ (𝑛𝑘))
6058, 59syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → 0 ≤ (𝑛𝑘)))
6141, 48subge0d 11704 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (0 ≤ (𝑛𝑘) ↔ 𝑘𝑛))
6260, 61sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵𝑘𝑛))
6362adantld 490 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘𝑛))
6456, 63mtod 198 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6564ralrimiva 3124 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
66 rabeq0 4338 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6765, 66sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
6838, 67eqtrid 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = ∅)
6968oveq2d 7362 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅))
70 inss1 4187 . . . . . . . . . . . . . . . . 17 ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ (𝑃𝑘)
7170, 33sstrid 3946 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
72 sadid1 16376 . . . . . . . . . . . . . . . 16 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7371, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7469, 73eqtrd 2766 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7574ineq1d 4169 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))))
76 inass 4178 . . . . . . . . . . . . . 14 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))))
77 inidm 4177 . . . . . . . . . . . . . . 15 ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))) = (0..^(𝑁 + 1))
7877ineq2i 4167 . . . . . . . . . . . . . 14 ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
7976, 78eqtri 2754 . . . . . . . . . . . . 13 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8075, 79eqtrdi 2782 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8137, 80eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8281eleq2d 2817 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ 𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))))
83 elin 3918 . . . . . . . . . 10 (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
84 elin 3918 . . . . . . . . . 10 (𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
8582, 83, 843bitr3g 313 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
86 nn0uz 12771 . . . . . . . . . . . . 13 0 = (ℤ‘0)
8742, 86eleqtrdi 2841 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ‘0))
88 eluzfz2 13429 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
8987, 88syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0...𝑁))
9042nn0zd 12491 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
91 fzval3 13631 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9290, 91syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (0...𝑁) = (0..^(𝑁 + 1)))
9389, 92eleqtrd 2833 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
9493biantrud 531 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9593biantrud 531 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃𝑘) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9685, 94, 953bitr4d 311 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ 𝑁 ∈ (𝑃𝑘)))
9730, 96bitrd 279 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃𝑘)))
9897bibi2d 342 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
9998biimprd 248 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
10099expcom 413 . . . 4 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
101100a2d 29 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
1025, 9, 13, 17, 22, 101uzind4i 12805 . 2 (𝑀 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1031, 102mpcom 38 1 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cin 3901  wss 3902  c0 4283  ifcif 4475  𝒫 cpw 4550   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cmpo 7348  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cle 11144  cmin 11341  0cn0 12378  cz 12465  cuz 12729  ...cfz 13404  ..^cfzo 13551  seqcseq 13905   sadd csad 16328   smul csmu 16329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-dvds 16161  df-bits 16330  df-sad 16359  df-smu 16384
This theorem is referenced by:  smupvallem  16391  smueqlem  16398
  Copyright terms: Public domain W3C validator