MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Visualization version   GIF version

Theorem smuval2 15918
Description: The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smuval2.m (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
Assertion
Ref Expression
smuval2 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smuval2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2 (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
2 fveq2 6668 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝑃𝑥) = (𝑃‘(𝑁 + 1)))
32eleq2d 2818 . . . . 5 (𝑥 = (𝑁 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
43bibi2d 346 . . . 4 (𝑥 = (𝑁 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
54imbi2d 344 . . 3 (𝑥 = (𝑁 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))))
6 fveq2 6668 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
76eleq2d 2818 . . . . 5 (𝑥 = 𝑘 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑘)))
87bibi2d 346 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
98imbi2d 344 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)))))
10 fveq2 6668 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
1110eleq2d 2818 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))
1211bibi2d 346 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
1312imbi2d 344 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
14 fveq2 6668 . . . . . 6 (𝑥 = 𝑀 → (𝑃𝑥) = (𝑃𝑀))
1514eleq2d 2818 . . . . 5 (𝑥 = 𝑀 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑀)))
1615bibi2d 346 . . . 4 (𝑥 = 𝑀 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1716imbi2d 344 . . 3 (𝑥 = 𝑀 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))))
18 smuval.a . . . 4 (𝜑𝐴 ⊆ ℕ0)
19 smuval.b . . . 4 (𝜑𝐵 ⊆ ℕ0)
20 smuval.p . . . 4 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21 smuval.n . . . 4 (𝜑𝑁 ∈ ℕ0)
2218, 19, 20, 21smuval 15917 . . 3 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
2318adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐴 ⊆ ℕ0)
2419adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐵 ⊆ ℕ0)
25 peano2nn0 12009 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2621, 25syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℕ0)
27 eluznn0 12392 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2826, 27sylan 583 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2923, 24, 20, 28smupp1 15916 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3029eleq2d 2818 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
3123, 24, 20smupf 15914 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑃:ℕ0⟶𝒫 ℕ0)
3231, 28ffvelrnd 6856 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ∈ 𝒫 ℕ0)
3332elpwid 4496 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ⊆ ℕ0)
34 ssrab2 3967 . . . . . . . . . . . . . 14 {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0
3534a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0)
3626adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
3733, 35, 36sadeq 15908 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))))
38 inrab2 4194 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}
39 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))))
4039elin1d 4086 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
4140nn0red 12030 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℝ)
4221adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℕ0)
4342adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
4443nn0red 12030 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℝ)
45 1red 10713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 1 ∈ ℝ)
4644, 45readdcld 10741 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
4728adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
4847nn0red 12030 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℝ)
4939elin2d 4087 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (0..^(𝑁 + 1)))
50 elfzolt2 13131 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (0..^(𝑁 + 1)) → 𝑛 < (𝑁 + 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < (𝑁 + 1))
52 eluzle 12330 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑘)
5441, 46, 48, 51, 53ltletrd 10871 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < 𝑘)
5541, 48ltnled 10858 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑛 < 𝑘 ↔ ¬ 𝑘𝑛))
5654, 55mpbid 235 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ 𝑘𝑛)
5724adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝐵 ⊆ ℕ0)
5857sseld 3874 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → (𝑛𝑘) ∈ ℕ0))
59 nn0ge0 11994 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛𝑘) ∈ ℕ0 → 0 ≤ (𝑛𝑘))
6058, 59syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → 0 ≤ (𝑛𝑘)))
6141, 48subge0d 11301 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (0 ≤ (𝑛𝑘) ↔ 𝑘𝑛))
6260, 61sylibd 242 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵𝑘𝑛))
6362adantld 494 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘𝑛))
6456, 63mtod 201 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6564ralrimiva 3096 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
66 rabeq0 4270 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6765, 66sylibr 237 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
6838, 67syl5eq 2785 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = ∅)
6968oveq2d 7180 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅))
70 inss1 4117 . . . . . . . . . . . . . . . . 17 ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ (𝑃𝑘)
7170, 33sstrid 3886 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
72 sadid1 15904 . . . . . . . . . . . . . . . 16 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7371, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7469, 73eqtrd 2773 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7574ineq1d 4100 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))))
76 inass 4108 . . . . . . . . . . . . . 14 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))))
77 inidm 4107 . . . . . . . . . . . . . . 15 ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))) = (0..^(𝑁 + 1))
7877ineq2i 4098 . . . . . . . . . . . . . 14 ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
7976, 78eqtri 2761 . . . . . . . . . . . . 13 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8075, 79eqtrdi 2789 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8137, 80eqtrd 2773 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8281eleq2d 2818 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ 𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))))
83 elin 3857 . . . . . . . . . 10 (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
84 elin 3857 . . . . . . . . . 10 (𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
8582, 83, 843bitr3g 316 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
86 nn0uz 12355 . . . . . . . . . . . . 13 0 = (ℤ‘0)
8742, 86eleqtrdi 2843 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ‘0))
88 eluzfz2 12999 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
8987, 88syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0...𝑁))
9042nn0zd 12159 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
91 fzval3 13190 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9290, 91syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (0...𝑁) = (0..^(𝑁 + 1)))
9389, 92eleqtrd 2835 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
9493biantrud 535 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9593biantrud 535 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃𝑘) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9685, 94, 953bitr4d 314 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ 𝑁 ∈ (𝑃𝑘)))
9730, 96bitrd 282 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃𝑘)))
9897bibi2d 346 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
9998biimprd 251 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
10099expcom 417 . . . 4 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
101100a2d 29 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
1025, 9, 13, 17, 22, 101uzind4i 12385 . 2 (𝑀 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1031, 102mpcom 38 1 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  {crab 3057  cin 3840  wss 3841  c0 4209  ifcif 4411  𝒫 cpw 4485   class class class wbr 5027  cmpt 5107  cfv 6333  (class class class)co 7164  cmpo 7166  0cc0 10608  1c1 10609   + caddc 10611   < clt 10746  cle 10747  cmin 10941  0cn0 11969  cz 12055  cuz 12317  ...cfz 12974  ..^cfzo 13117  seqcseq 13453   sadd csad 15856   smul csmu 15857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-xor 1507  df-tru 1545  df-fal 1555  df-had 1599  df-cad 1613  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-disj 4993  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-oi 9040  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-xnn0 12042  df-z 12056  df-uz 12318  df-rp 12466  df-fz 12975  df-fzo 13118  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-sum 15129  df-dvds 15693  df-bits 15858  df-sad 15887  df-smu 15912
This theorem is referenced by:  smupvallem  15919  smueqlem  15926
  Copyright terms: Public domain W3C validator