MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Visualization version   GIF version

Theorem smuval2 16459
Description: The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smuval2.m (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
Assertion
Ref Expression
smuval2 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smuval2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2 (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
2 fveq2 6861 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝑃𝑥) = (𝑃‘(𝑁 + 1)))
32eleq2d 2815 . . . . 5 (𝑥 = (𝑁 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
43bibi2d 342 . . . 4 (𝑥 = (𝑁 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
54imbi2d 340 . . 3 (𝑥 = (𝑁 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))))
6 fveq2 6861 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
76eleq2d 2815 . . . . 5 (𝑥 = 𝑘 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑘)))
87bibi2d 342 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
98imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)))))
10 fveq2 6861 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
1110eleq2d 2815 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))
1211bibi2d 342 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
1312imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
14 fveq2 6861 . . . . . 6 (𝑥 = 𝑀 → (𝑃𝑥) = (𝑃𝑀))
1514eleq2d 2815 . . . . 5 (𝑥 = 𝑀 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑀)))
1615bibi2d 342 . . . 4 (𝑥 = 𝑀 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1716imbi2d 340 . . 3 (𝑥 = 𝑀 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))))
18 smuval.a . . . 4 (𝜑𝐴 ⊆ ℕ0)
19 smuval.b . . . 4 (𝜑𝐵 ⊆ ℕ0)
20 smuval.p . . . 4 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21 smuval.n . . . 4 (𝜑𝑁 ∈ ℕ0)
2218, 19, 20, 21smuval 16458 . . 3 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
2318adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐴 ⊆ ℕ0)
2419adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐵 ⊆ ℕ0)
25 peano2nn0 12489 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2621, 25syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℕ0)
27 eluznn0 12883 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2826, 27sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2923, 24, 20, 28smupp1 16457 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3029eleq2d 2815 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
3123, 24, 20smupf 16455 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑃:ℕ0⟶𝒫 ℕ0)
3231, 28ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ∈ 𝒫 ℕ0)
3332elpwid 4575 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ⊆ ℕ0)
34 ssrab2 4046 . . . . . . . . . . . . . 14 {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0
3534a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0)
3626adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
3733, 35, 36sadeq 16449 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))))
38 inrab2 4283 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}
39 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))))
4039elin1d 4170 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
4140nn0red 12511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℝ)
4221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℕ0)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
4443nn0red 12511 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℝ)
45 1red 11182 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 1 ∈ ℝ)
4644, 45readdcld 11210 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
4728adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
4847nn0red 12511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℝ)
4939elin2d 4171 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (0..^(𝑁 + 1)))
50 elfzolt2 13636 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (0..^(𝑁 + 1)) → 𝑛 < (𝑁 + 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < (𝑁 + 1))
52 eluzle 12813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑘)
5441, 46, 48, 51, 53ltletrd 11341 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < 𝑘)
5541, 48ltnled 11328 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑛 < 𝑘 ↔ ¬ 𝑘𝑛))
5654, 55mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ 𝑘𝑛)
5724adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝐵 ⊆ ℕ0)
5857sseld 3948 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → (𝑛𝑘) ∈ ℕ0))
59 nn0ge0 12474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛𝑘) ∈ ℕ0 → 0 ≤ (𝑛𝑘))
6058, 59syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → 0 ≤ (𝑛𝑘)))
6141, 48subge0d 11775 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (0 ≤ (𝑛𝑘) ↔ 𝑘𝑛))
6260, 61sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵𝑘𝑛))
6362adantld 490 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘𝑛))
6456, 63mtod 198 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6564ralrimiva 3126 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
66 rabeq0 4354 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6765, 66sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
6838, 67eqtrid 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = ∅)
6968oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅))
70 inss1 4203 . . . . . . . . . . . . . . . . 17 ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ (𝑃𝑘)
7170, 33sstrid 3961 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
72 sadid1 16445 . . . . . . . . . . . . . . . 16 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7371, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7469, 73eqtrd 2765 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7574ineq1d 4185 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))))
76 inass 4194 . . . . . . . . . . . . . 14 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))))
77 inidm 4193 . . . . . . . . . . . . . . 15 ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))) = (0..^(𝑁 + 1))
7877ineq2i 4183 . . . . . . . . . . . . . 14 ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
7976, 78eqtri 2753 . . . . . . . . . . . . 13 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8075, 79eqtrdi 2781 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8137, 80eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8281eleq2d 2815 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ 𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))))
83 elin 3933 . . . . . . . . . 10 (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
84 elin 3933 . . . . . . . . . 10 (𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
8582, 83, 843bitr3g 313 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
86 nn0uz 12842 . . . . . . . . . . . . 13 0 = (ℤ‘0)
8742, 86eleqtrdi 2839 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ‘0))
88 eluzfz2 13500 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
8987, 88syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0...𝑁))
9042nn0zd 12562 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
91 fzval3 13702 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9290, 91syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (0...𝑁) = (0..^(𝑁 + 1)))
9389, 92eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
9493biantrud 531 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9593biantrud 531 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃𝑘) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9685, 94, 953bitr4d 311 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ 𝑁 ∈ (𝑃𝑘)))
9730, 96bitrd 279 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃𝑘)))
9897bibi2d 342 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
9998biimprd 248 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
10099expcom 413 . . . 4 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
101100a2d 29 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
1025, 9, 13, 17, 22, 101uzind4i 12876 . 2 (𝑀 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1031, 102mpcom 38 1 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cin 3916  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  seqcseq 13973   sadd csad 16397   smul csmu 16398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-bits 16399  df-sad 16428  df-smu 16453
This theorem is referenced by:  smupvallem  16460  smueqlem  16467
  Copyright terms: Public domain W3C validator