MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest Structured version   Visualization version   GIF version

Theorem ordtrest 23145
Description: The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
ordtrest ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))

Proof of Theorem ordtrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inex1g 5294 . . . 4 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
21adantr 480 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
3 eqid 2736 . . . 4 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
4 eqid 2736 . . . 4 ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
5 eqid 2736 . . . 4 ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
63, 4, 5ordtval 23132 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))))
72, 6syl 17 . 2 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))))
8 ordttop 23143 . . . 4 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Top)
9 resttop 23103 . . . 4 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top)
108, 9sylan 580 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top)
11 eqid 2736 . . . . . . . 8 dom 𝑅 = dom 𝑅
1211psssdm2 18596 . . . . . . 7 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅𝐴))
1312adantr 480 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅𝐴))
148adantr 480 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘𝑅) ∈ Top)
15 simpr 484 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → 𝐴𝑉)
1611ordttopon 23136 . . . . . . . . 9 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
1716adantr 480 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
18 toponmax 22869 . . . . . . . 8 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → dom 𝑅 ∈ (ordTop‘𝑅))
1917, 18syl 17 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → dom 𝑅 ∈ (ordTop‘𝑅))
20 elrestr 17447 . . . . . . 7 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉 ∧ dom 𝑅 ∈ (ordTop‘𝑅)) → (dom 𝑅𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
2114, 15, 19, 20syl3anc 1373 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (dom 𝑅𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
2213, 21eqeltrd 2835 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘𝑅) ↾t 𝐴))
2322snssd 4790 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → {dom (𝑅 ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘𝑅) ↾t 𝐴))
2413rabeqdv 3436 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
2513, 24mpteq12dv 5212 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}))
2625rneqd 5923 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}))
27 inrab2 4297 . . . . . . . . . 10 ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦𝑅𝑥}
28 simpr 484 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → 𝑦 ∈ (dom 𝑅𝐴))
2928elin2d 4185 . . . . . . . . . . . . 13 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → 𝑦𝐴)
30 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → 𝑥 ∈ (dom 𝑅𝐴))
3130elin2d 4185 . . . . . . . . . . . . . 14 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → 𝑥𝐴)
3231adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → 𝑥𝐴)
33 brinxp 5738 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3429, 32, 33syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3534notbid 318 . . . . . . . . . . 11 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3635rabbidva 3427 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
3727, 36eqtrid 2783 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
3814adantr 480 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → (ordTop‘𝑅) ∈ Top)
3915adantr 480 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → 𝐴𝑉)
40 simpl 482 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → 𝑅 ∈ PosetRel)
41 elinel1 4181 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝑅𝐴) → 𝑥 ∈ dom 𝑅)
4211ordtopn1 23137 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
4340, 41, 42syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
44 elrestr 17447 . . . . . . . . . 10 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
4538, 39, 43, 44syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
4637, 45eqeltrrd 2836 . . . . . . . 8 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘𝑅) ↾t 𝐴))
4746fmpttd 7110 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}):(dom 𝑅𝐴)⟶((ordTop‘𝑅) ↾t 𝐴))
4847frnd 6719 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
4926, 48eqsstrd 3998 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
5013rabeqdv 3436 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
5113, 50mpteq12dv 5212 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))
5251rneqd 5923 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))
53 inrab2 4297 . . . . . . . . . 10 ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥𝑅𝑦}
54 brinxp 5738 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
5532, 29, 54syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
5655notbid 318 . . . . . . . . . . 11 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
5756rabbidva 3427 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
5853, 57eqtrid 2783 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
5911ordtopn2 23138 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
6040, 41, 59syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
61 elrestr 17447 . . . . . . . . . 10 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
6238, 39, 60, 61syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
6358, 62eqeltrrd 2836 . . . . . . . 8 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘𝑅) ↾t 𝐴))
6463fmpttd 7110 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}):(dom 𝑅𝐴)⟶((ordTop‘𝑅) ↾t 𝐴))
6564frnd 6719 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
6652, 65eqsstrd 3998 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
6749, 66unssd 4172 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
6823, 67unssd 4172 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
69 tgfiss 22934 . . 3 ((((ordTop‘𝑅) ↾t 𝐴) ∈ Top ∧ ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) → (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
7010, 68, 69syl2anc 584 . 2 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
717, 70eqsstrd 3998 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  cun 3929  cin 3930  wss 3931  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  cfv 6536  (class class class)co 7410  ficfi 9427  t crest 17439  topGenctg 17456  ordTopcordt 17518  PosetRelcps 18579  Topctop 22836  TopOnctopon 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-2o 8486  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-ordt 17520  df-ps 18581  df-top 22837  df-topon 22854  df-bases 22889
This theorem is referenced by:  ordtrest2  23147
  Copyright terms: Public domain W3C validator