Step | Hyp | Ref
| Expression |
1 | | inex1g 5243 |
. . . 4
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
3 | | eqid 2738 |
. . . 4
⊢ dom
(𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴)) |
4 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
5 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
6 | 3, 4, 5 | ordtval 22340 |
. . 3
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})))))) |
7 | 2, 6 | syl 17 |
. 2
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})))))) |
8 | | ordttop 22351 |
. . . 4
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
Top) |
9 | | resttop 22311 |
. . . 4
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉) →
((ordTop‘𝑅)
↾t 𝐴)
∈ Top) |
10 | 8, 9 | sylan 580 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top) |
11 | | eqid 2738 |
. . . . . . . 8
⊢ dom 𝑅 = dom 𝑅 |
12 | 11 | psssdm2 18299 |
. . . . . . 7
⊢ (𝑅 ∈ PosetRel → dom
(𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴)) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴)) |
14 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘𝑅) ∈ Top) |
15 | | simpr 485 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
16 | 11 | ordttopon 22344 |
. . . . . . . . 9
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
(TopOn‘dom 𝑅)) |
17 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅)) |
18 | | toponmax 22075 |
. . . . . . . 8
⊢
((ordTop‘𝑅)
∈ (TopOn‘dom 𝑅)
→ dom 𝑅 ∈
(ordTop‘𝑅)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom 𝑅 ∈ (ordTop‘𝑅)) |
20 | | elrestr 17139 |
. . . . . . 7
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ dom 𝑅 ∈ (ordTop‘𝑅)) → (dom 𝑅 ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
21 | 14, 15, 19, 20 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (dom 𝑅 ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
22 | 13, 21 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
23 | 22 | snssd 4742 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {dom (𝑅 ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
24 | 13 | rabeqdv 3419 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
25 | 13, 24 | mpteq12dv 5165 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})) |
26 | 25 | rneqd 5847 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})) |
27 | | inrab2 4241 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦𝑅𝑥} |
28 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) |
29 | 28 | elin2d 4133 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑦 ∈ 𝐴) |
30 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) |
31 | 30 | elin2d 4133 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
33 | | brinxp 5665 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
34 | 29, 32, 33 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
35 | 34 | notbid 318 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
36 | 35 | rabbidva 3413 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
37 | 27, 36 | eqtrid 2790 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
38 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → (ordTop‘𝑅) ∈ Top) |
39 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝐴 ∈ 𝑉) |
40 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ PosetRel) |
41 | | elinel1 4129 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) → 𝑥 ∈ dom 𝑅) |
42 | 11 | ordtopn1 22345 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
43 | 40, 41, 42 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
44 | | elrestr 17139 |
. . . . . . . . . 10
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
45 | 38, 39, 43, 44 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
46 | 37, 45 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
47 | 46 | fmpttd 6989 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴)) |
48 | 47 | frnd 6608 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
49 | 26, 48 | eqsstrd 3959 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
50 | 13 | rabeqdv 3419 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
51 | 13, 50 | mpteq12dv 5165 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) |
52 | 51 | rneqd 5847 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) |
53 | | inrab2 4241 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥𝑅𝑦} |
54 | | brinxp 5665 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
55 | 32, 29, 54 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
56 | 55 | notbid 318 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
57 | 56 | rabbidva 3413 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
58 | 53, 57 | eqtrid 2790 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
59 | 11 | ordtopn2 22346 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
60 | 40, 41, 59 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
61 | | elrestr 17139 |
. . . . . . . . . 10
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
62 | 38, 39, 60, 61 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
63 | 58, 62 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
64 | 63 | fmpttd 6989 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴)) |
65 | 64 | frnd 6608 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
66 | 52, 65 | eqsstrd 3959 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
67 | 49, 66 | unssd 4120 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
68 | 23, 67 | unssd 4120 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
69 | | tgfiss 22141 |
. . 3
⊢
((((ordTop‘𝑅)
↾t 𝐴)
∈ Top ∧ ({dom (𝑅
∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) → (topGen‘(fi‘({dom
(𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
70 | 10, 68, 69 | syl2anc 584 |
. 2
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (topGen‘(fi‘({dom
(𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
71 | 7, 70 | eqsstrd 3959 |
1
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |