MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest Structured version   Visualization version   GIF version

Theorem ordtrest 22353
Description: The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
ordtrest ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))

Proof of Theorem ordtrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inex1g 5243 . . . 4 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
21adantr 481 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
3 eqid 2738 . . . 4 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
4 eqid 2738 . . . 4 ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
5 eqid 2738 . . . 4 ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
63, 4, 5ordtval 22340 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))))
72, 6syl 17 . 2 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))))
8 ordttop 22351 . . . 4 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Top)
9 resttop 22311 . . . 4 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top)
108, 9sylan 580 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top)
11 eqid 2738 . . . . . . . 8 dom 𝑅 = dom 𝑅
1211psssdm2 18299 . . . . . . 7 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅𝐴))
1312adantr 481 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅𝐴))
148adantr 481 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘𝑅) ∈ Top)
15 simpr 485 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → 𝐴𝑉)
1611ordttopon 22344 . . . . . . . . 9 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
1716adantr 481 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
18 toponmax 22075 . . . . . . . 8 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → dom 𝑅 ∈ (ordTop‘𝑅))
1917, 18syl 17 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → dom 𝑅 ∈ (ordTop‘𝑅))
20 elrestr 17139 . . . . . . 7 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉 ∧ dom 𝑅 ∈ (ordTop‘𝑅)) → (dom 𝑅𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
2114, 15, 19, 20syl3anc 1370 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (dom 𝑅𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
2213, 21eqeltrd 2839 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘𝑅) ↾t 𝐴))
2322snssd 4742 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → {dom (𝑅 ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘𝑅) ↾t 𝐴))
2413rabeqdv 3419 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
2513, 24mpteq12dv 5165 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}))
2625rneqd 5847 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}))
27 inrab2 4241 . . . . . . . . . 10 ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦𝑅𝑥}
28 simpr 485 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → 𝑦 ∈ (dom 𝑅𝐴))
2928elin2d 4133 . . . . . . . . . . . . 13 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → 𝑦𝐴)
30 simpr 485 . . . . . . . . . . . . . . 15 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → 𝑥 ∈ (dom 𝑅𝐴))
3130elin2d 4133 . . . . . . . . . . . . . 14 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → 𝑥𝐴)
3231adantr 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → 𝑥𝐴)
33 brinxp 5665 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3429, 32, 33syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3534notbid 318 . . . . . . . . . . 11 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3635rabbidva 3413 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
3727, 36eqtrid 2790 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
3814adantr 481 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → (ordTop‘𝑅) ∈ Top)
3915adantr 481 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → 𝐴𝑉)
40 simpl 483 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → 𝑅 ∈ PosetRel)
41 elinel1 4129 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝑅𝐴) → 𝑥 ∈ dom 𝑅)
4211ordtopn1 22345 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
4340, 41, 42syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅))
44 elrestr 17139 . . . . . . . . . 10 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
4538, 39, 43, 44syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
4637, 45eqeltrrd 2840 . . . . . . . 8 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘𝑅) ↾t 𝐴))
4746fmpttd 6989 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}):(dom 𝑅𝐴)⟶((ordTop‘𝑅) ↾t 𝐴))
4847frnd 6608 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
4926, 48eqsstrd 3959 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
5013rabeqdv 3419 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
5113, 50mpteq12dv 5165 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))
5251rneqd 5847 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))
53 inrab2 4241 . . . . . . . . . 10 ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥𝑅𝑦}
54 brinxp 5665 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
5532, 29, 54syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
5655notbid 318 . . . . . . . . . . 11 ((((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) ∧ 𝑦 ∈ (dom 𝑅𝐴)) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
5756rabbidva 3413 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
5853, 57eqtrid 2790 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})
5911ordtopn2 22346 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
6040, 41, 59syl2an 596 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅))
61 elrestr 17139 . . . . . . . . . 10 (((ordTop‘𝑅) ∈ Top ∧ 𝐴𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
6238, 39, 60, 61syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴))
6358, 62eqeltrrd 2840 . . . . . . . 8 (((𝑅 ∈ PosetRel ∧ 𝐴𝑉) ∧ 𝑥 ∈ (dom 𝑅𝐴)) → {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘𝑅) ↾t 𝐴))
6463fmpttd 6989 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}):(dom 𝑅𝐴)⟶((ordTop‘𝑅) ↾t 𝐴))
6564frnd 6608 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ (dom 𝑅𝐴) ↦ {𝑦 ∈ (dom 𝑅𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
6652, 65eqsstrd 3959 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
6749, 66unssd 4120 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
6823, 67unssd 4120 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
69 tgfiss 22141 . . 3 ((((ordTop‘𝑅) ↾t 𝐴) ∈ Top ∧ ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) → (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
7010, 68, 69syl2anc 584 . 2 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
717, 70eqsstrd 3959 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cun 3885  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cfv 6433  (class class class)co 7275  ficfi 9169  t crest 17131  topGenctg 17148  ordTopcordt 17210  PosetRelcps 18282  Topctop 22042  TopOnctopon 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-ordt 17212  df-ps 18284  df-top 22043  df-topon 22060  df-bases 22096
This theorem is referenced by:  ordtrest2  22355
  Copyright terms: Public domain W3C validator