Step | Hyp | Ref
| Expression |
1 | | inex1g 5318 |
. . . 4
β’ (π
β PosetRel β (π
β© (π΄ Γ π΄)) β V) |
2 | 1 | adantr 481 |
. . 3
β’ ((π
β PosetRel β§ π΄ β π) β (π
β© (π΄ Γ π΄)) β V) |
3 | | eqid 2732 |
. . . 4
β’ dom
(π
β© (π΄ Γ π΄)) = dom (π
β© (π΄ Γ π΄)) |
4 | | eqid 2732 |
. . . 4
β’ ran
(π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) = ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) |
5 | | eqid 2732 |
. . . 4
β’ ran
(π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) = ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) |
6 | 3, 4, 5 | ordtval 22684 |
. . 3
β’ ((π
β© (π΄ Γ π΄)) β V β (ordTopβ(π
β© (π΄ Γ π΄))) = (topGenβ(fiβ({dom (π
β© (π΄ Γ π΄))} βͺ (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦})))))) |
7 | 2, 6 | syl 17 |
. 2
β’ ((π
β PosetRel β§ π΄ β π) β (ordTopβ(π
β© (π΄ Γ π΄))) = (topGenβ(fiβ({dom (π
β© (π΄ Γ π΄))} βͺ (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦})))))) |
8 | | ordttop 22695 |
. . . 4
β’ (π
β PosetRel β
(ordTopβπ
) β
Top) |
9 | | resttop 22655 |
. . . 4
β’
(((ordTopβπ
)
β Top β§ π΄ β
π) β
((ordTopβπ
)
βΎt π΄)
β Top) |
10 | 8, 9 | sylan 580 |
. . 3
β’ ((π
β PosetRel β§ π΄ β π) β ((ordTopβπ
) βΎt π΄) β Top) |
11 | | eqid 2732 |
. . . . . . . 8
β’ dom π
= dom π
|
12 | 11 | psssdm2 18530 |
. . . . . . 7
β’ (π
β PosetRel β dom
(π
β© (π΄ Γ π΄)) = (dom π
β© π΄)) |
13 | 12 | adantr 481 |
. . . . . 6
β’ ((π
β PosetRel β§ π΄ β π) β dom (π
β© (π΄ Γ π΄)) = (dom π
β© π΄)) |
14 | 8 | adantr 481 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β (ordTopβπ
) β Top) |
15 | | simpr 485 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β π΄ β π) |
16 | 11 | ordttopon 22688 |
. . . . . . . . 9
β’ (π
β PosetRel β
(ordTopβπ
) β
(TopOnβdom π
)) |
17 | 16 | adantr 481 |
. . . . . . . 8
β’ ((π
β PosetRel β§ π΄ β π) β (ordTopβπ
) β (TopOnβdom π
)) |
18 | | toponmax 22419 |
. . . . . . . 8
β’
((ordTopβπ
)
β (TopOnβdom π
)
β dom π
β
(ordTopβπ
)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β dom π
β (ordTopβπ
)) |
20 | | elrestr 17370 |
. . . . . . 7
β’
(((ordTopβπ
)
β Top β§ π΄ β
π β§ dom π
β (ordTopβπ
)) β (dom π
β© π΄) β ((ordTopβπ
) βΎt π΄)) |
21 | 14, 15, 19, 20 | syl3anc 1371 |
. . . . . 6
β’ ((π
β PosetRel β§ π΄ β π) β (dom π
β© π΄) β ((ordTopβπ
) βΎt π΄)) |
22 | 13, 21 | eqeltrd 2833 |
. . . . 5
β’ ((π
β PosetRel β§ π΄ β π) β dom (π
β© (π΄ Γ π΄)) β ((ordTopβπ
) βΎt π΄)) |
23 | 22 | snssd 4811 |
. . . 4
β’ ((π
β PosetRel β§ π΄ β π) β {dom (π
β© (π΄ Γ π΄))} β ((ordTopβπ
) βΎt π΄)) |
24 | 13 | rabeqdv 3447 |
. . . . . . . 8
β’ ((π
β PosetRel β§ π΄ β π) β {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯} = {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) |
25 | 13, 24 | mpteq12dv 5238 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) = (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯})) |
26 | 25 | rneqd 5935 |
. . . . . 6
β’ ((π
β PosetRel β§ π΄ β π) β ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) = ran (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯})) |
27 | | inrab2 4306 |
. . . . . . . . . 10
β’ ({π¦ β dom π
β£ Β¬ π¦π
π₯} β© π΄) = {π¦ β (dom π
β© π΄) β£ Β¬ π¦π
π₯} |
28 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β π¦ β (dom π
β© π΄)) |
29 | 28 | elin2d 4198 |
. . . . . . . . . . . . 13
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β π¦ β π΄) |
30 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β π₯ β (dom π
β© π΄)) |
31 | 30 | elin2d 4198 |
. . . . . . . . . . . . . 14
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β π₯ β π΄) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β π₯ β π΄) |
33 | | brinxp 5752 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π₯ β π΄) β (π¦π
π₯ β π¦(π
β© (π΄ Γ π΄))π₯)) |
34 | 29, 32, 33 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β (π¦π
π₯ β π¦(π
β© (π΄ Γ π΄))π₯)) |
35 | 34 | notbid 317 |
. . . . . . . . . . 11
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β (Β¬ π¦π
π₯ β Β¬ π¦(π
β© (π΄ Γ π΄))π₯)) |
36 | 35 | rabbidva 3439 |
. . . . . . . . . 10
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β {π¦ β (dom π
β© π΄) β£ Β¬ π¦π
π₯} = {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) |
37 | 27, 36 | eqtrid 2784 |
. . . . . . . . 9
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β ({π¦ β dom π
β£ Β¬ π¦π
π₯} β© π΄) = {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) |
38 | 14 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β (ordTopβπ
) β Top) |
39 | 15 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β π΄ β π) |
40 | | simpl 483 |
. . . . . . . . . . 11
β’ ((π
β PosetRel β§ π΄ β π) β π
β PosetRel) |
41 | | elinel1 4194 |
. . . . . . . . . . 11
β’ (π₯ β (dom π
β© π΄) β π₯ β dom π
) |
42 | 11 | ordtopn1 22689 |
. . . . . . . . . . 11
β’ ((π
β PosetRel β§ π₯ β dom π
) β {π¦ β dom π
β£ Β¬ π¦π
π₯} β (ordTopβπ
)) |
43 | 40, 41, 42 | syl2an 596 |
. . . . . . . . . 10
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β {π¦ β dom π
β£ Β¬ π¦π
π₯} β (ordTopβπ
)) |
44 | | elrestr 17370 |
. . . . . . . . . 10
β’
(((ordTopβπ
)
β Top β§ π΄ β
π β§ {π¦ β dom π
β£ Β¬ π¦π
π₯} β (ordTopβπ
)) β ({π¦ β dom π
β£ Β¬ π¦π
π₯} β© π΄) β ((ordTopβπ
) βΎt π΄)) |
45 | 38, 39, 43, 44 | syl3anc 1371 |
. . . . . . . . 9
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β ({π¦ β dom π
β£ Β¬ π¦π
π₯} β© π΄) β ((ordTopβπ
) βΎt π΄)) |
46 | 37, 45 | eqeltrrd 2834 |
. . . . . . . 8
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯} β ((ordTopβπ
) βΎt π΄)) |
47 | 46 | fmpttd 7111 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}):(dom π
β© π΄)βΆ((ordTopβπ
) βΎt π΄)) |
48 | 47 | frnd 6722 |
. . . . . 6
β’ ((π
β PosetRel β§ π΄ β π) β ran (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) β ((ordTopβπ
) βΎt π΄)) |
49 | 26, 48 | eqsstrd 4019 |
. . . . 5
β’ ((π
β PosetRel β§ π΄ β π) β ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) β ((ordTopβπ
) βΎt π΄)) |
50 | 13 | rabeqdv 3447 |
. . . . . . . 8
β’ ((π
β PosetRel β§ π΄ β π) β {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦} = {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) |
51 | 13, 50 | mpteq12dv 5238 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) = (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦})) |
52 | 51 | rneqd 5935 |
. . . . . 6
β’ ((π
β PosetRel β§ π΄ β π) β ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) = ran (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦})) |
53 | | inrab2 4306 |
. . . . . . . . . 10
β’ ({π¦ β dom π
β£ Β¬ π₯π
π¦} β© π΄) = {π¦ β (dom π
β© π΄) β£ Β¬ π₯π
π¦} |
54 | | brinxp 5752 |
. . . . . . . . . . . . 13
β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯π
π¦ β π₯(π
β© (π΄ Γ π΄))π¦)) |
55 | 32, 29, 54 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β (π₯π
π¦ β π₯(π
β© (π΄ Γ π΄))π¦)) |
56 | 55 | notbid 317 |
. . . . . . . . . . 11
β’ ((((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β§ π¦ β (dom π
β© π΄)) β (Β¬ π₯π
π¦ β Β¬ π₯(π
β© (π΄ Γ π΄))π¦)) |
57 | 56 | rabbidva 3439 |
. . . . . . . . . 10
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β {π¦ β (dom π
β© π΄) β£ Β¬ π₯π
π¦} = {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) |
58 | 53, 57 | eqtrid 2784 |
. . . . . . . . 9
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β ({π¦ β dom π
β£ Β¬ π₯π
π¦} β© π΄) = {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) |
59 | 11 | ordtopn2 22690 |
. . . . . . . . . . 11
β’ ((π
β PosetRel β§ π₯ β dom π
) β {π¦ β dom π
β£ Β¬ π₯π
π¦} β (ordTopβπ
)) |
60 | 40, 41, 59 | syl2an 596 |
. . . . . . . . . 10
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β {π¦ β dom π
β£ Β¬ π₯π
π¦} β (ordTopβπ
)) |
61 | | elrestr 17370 |
. . . . . . . . . 10
β’
(((ordTopβπ
)
β Top β§ π΄ β
π β§ {π¦ β dom π
β£ Β¬ π₯π
π¦} β (ordTopβπ
)) β ({π¦ β dom π
β£ Β¬ π₯π
π¦} β© π΄) β ((ordTopβπ
) βΎt π΄)) |
62 | 38, 39, 60, 61 | syl3anc 1371 |
. . . . . . . . 9
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β ({π¦ β dom π
β£ Β¬ π₯π
π¦} β© π΄) β ((ordTopβπ
) βΎt π΄)) |
63 | 58, 62 | eqeltrrd 2834 |
. . . . . . . 8
β’ (((π
β PosetRel β§ π΄ β π) β§ π₯ β (dom π
β© π΄)) β {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦} β ((ordTopβπ
) βΎt π΄)) |
64 | 63 | fmpttd 7111 |
. . . . . . 7
β’ ((π
β PosetRel β§ π΄ β π) β (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}):(dom π
β© π΄)βΆ((ordTopβπ
) βΎt π΄)) |
65 | 64 | frnd 6722 |
. . . . . 6
β’ ((π
β PosetRel β§ π΄ β π) β ran (π₯ β (dom π
β© π΄) β¦ {π¦ β (dom π
β© π΄) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) β ((ordTopβπ
) βΎt π΄)) |
66 | 52, 65 | eqsstrd 4019 |
. . . . 5
β’ ((π
β PosetRel β§ π΄ β π) β ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}) β ((ordTopβπ
) βΎt π΄)) |
67 | 49, 66 | unssd 4185 |
. . . 4
β’ ((π
β PosetRel β§ π΄ β π) β (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦})) β ((ordTopβπ
) βΎt π΄)) |
68 | 23, 67 | unssd 4185 |
. . 3
β’ ((π
β PosetRel β§ π΄ β π) β ({dom (π
β© (π΄ Γ π΄))} βͺ (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}))) β ((ordTopβπ
) βΎt π΄)) |
69 | | tgfiss 22485 |
. . 3
β’
((((ordTopβπ
)
βΎt π΄)
β Top β§ ({dom (π
β© (π΄ Γ π΄))} βͺ (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}))) β ((ordTopβπ
) βΎt π΄)) β (topGenβ(fiβ({dom
(π
β© (π΄ Γ π΄))} βͺ (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}))))) β ((ordTopβπ
) βΎt π΄)) |
70 | 10, 68, 69 | syl2anc 584 |
. 2
β’ ((π
β PosetRel β§ π΄ β π) β (topGenβ(fiβ({dom
(π
β© (π΄ Γ π΄))} βͺ (ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π¦(π
β© (π΄ Γ π΄))π₯}) βͺ ran (π₯ β dom (π
β© (π΄ Γ π΄)) β¦ {π¦ β dom (π
β© (π΄ Γ π΄)) β£ Β¬ π₯(π
β© (π΄ Γ π΄))π¦}))))) β ((ordTopβπ
) βΎt π΄)) |
71 | 7, 70 | eqsstrd 4019 |
1
β’ ((π
β PosetRel β§ π΄ β π) β (ordTopβ(π
β© (π΄ Γ π΄))) β ((ordTopβπ
) βΎt π΄)) |