| Step | Hyp | Ref
| Expression |
| 1 | | inex1g 5294 |
. . . 4
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 3 | | eqid 2736 |
. . . 4
⊢ dom
(𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴)) |
| 4 | | eqid 2736 |
. . . 4
⊢ ran
(𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 5 | | eqid 2736 |
. . . 4
⊢ ran
(𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 6 | 3, 4, 5 | ordtval 23132 |
. . 3
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})))))) |
| 7 | 2, 6 | syl 17 |
. 2
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})))))) |
| 8 | | ordttop 23143 |
. . . 4
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
Top) |
| 9 | | resttop 23103 |
. . . 4
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉) →
((ordTop‘𝑅)
↾t 𝐴)
∈ Top) |
| 10 | 8, 9 | sylan 580 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top) |
| 11 | | eqid 2736 |
. . . . . . . 8
⊢ dom 𝑅 = dom 𝑅 |
| 12 | 11 | psssdm2 18596 |
. . . . . . 7
⊢ (𝑅 ∈ PosetRel → dom
(𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴)) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴)) |
| 14 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘𝑅) ∈ Top) |
| 15 | | simpr 484 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
| 16 | 11 | ordttopon 23136 |
. . . . . . . . 9
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
(TopOn‘dom 𝑅)) |
| 17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅)) |
| 18 | | toponmax 22869 |
. . . . . . . 8
⊢
((ordTop‘𝑅)
∈ (TopOn‘dom 𝑅)
→ dom 𝑅 ∈
(ordTop‘𝑅)) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom 𝑅 ∈ (ordTop‘𝑅)) |
| 20 | | elrestr 17447 |
. . . . . . 7
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ dom 𝑅 ∈ (ordTop‘𝑅)) → (dom 𝑅 ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 21 | 14, 15, 19, 20 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (dom 𝑅 ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 22 | 13, 21 | eqeltrd 2835 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 23 | 22 | snssd 4790 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {dom (𝑅 ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 24 | 13 | rabeqdv 3436 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 25 | 13, 24 | mpteq12dv 5212 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})) |
| 26 | 25 | rneqd 5923 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})) |
| 27 | | inrab2 4297 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦𝑅𝑥} |
| 28 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) |
| 29 | 28 | elin2d 4185 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑦 ∈ 𝐴) |
| 30 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) |
| 31 | 30 | elin2d 4185 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 33 | | brinxp 5738 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 34 | 29, 32, 33 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 35 | 34 | notbid 318 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 36 | 35 | rabbidva 3427 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 37 | 27, 36 | eqtrid 2783 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 38 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → (ordTop‘𝑅) ∈ Top) |
| 39 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝐴 ∈ 𝑉) |
| 40 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ PosetRel) |
| 41 | | elinel1 4181 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) → 𝑥 ∈ dom 𝑅) |
| 42 | 11 | ordtopn1 23137 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 43 | 40, 41, 42 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 44 | | elrestr 17447 |
. . . . . . . . . 10
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 45 | 38, 39, 43, 44 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 46 | 37, 45 | eqeltrrd 2836 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 47 | 46 | fmpttd 7110 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴)) |
| 48 | 47 | frnd 6719 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 49 | 26, 48 | eqsstrd 3998 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 50 | 13 | rabeqdv 3436 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 51 | 13, 50 | mpteq12dv 5212 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) |
| 52 | 51 | rneqd 5923 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) |
| 53 | | inrab2 4297 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥𝑅𝑦} |
| 54 | | brinxp 5738 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
| 55 | 32, 29, 54 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
| 56 | 55 | notbid 318 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
| 57 | 56 | rabbidva 3427 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 58 | 53, 57 | eqtrid 2783 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 59 | 11 | ordtopn2 23138 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
| 60 | 40, 41, 59 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
| 61 | | elrestr 17447 |
. . . . . . . . . 10
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 62 | 38, 39, 60, 61 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 63 | 58, 62 | eqeltrrd 2836 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 64 | 63 | fmpttd 7110 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴)) |
| 65 | 64 | frnd 6719 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 66 | 52, 65 | eqsstrd 3998 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 67 | 49, 66 | unssd 4172 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 68 | 23, 67 | unssd 4172 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 69 | | tgfiss 22934 |
. . 3
⊢
((((ordTop‘𝑅)
↾t 𝐴)
∈ Top ∧ ({dom (𝑅
∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) → (topGen‘(fi‘({dom
(𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 70 | 10, 68, 69 | syl2anc 584 |
. 2
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (topGen‘(fi‘({dom
(𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 71 | 7, 70 | eqsstrd 3998 |
1
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |