MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intid Structured version   Visualization version   GIF version

Theorem intid 5327
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1 𝐴 ∈ V
Assertion
Ref Expression
intid {𝑥𝐴𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem intid
StepHypRef Expression
1 snex 5309 . . 3 {𝐴} ∈ V
2 eleq2 2819 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
3 intid.1 . . . . 5 𝐴 ∈ V
43snid 4563 . . . 4 𝐴 ∈ {𝐴}
52, 4intmin3 4873 . . 3 ({𝐴} ∈ V → {𝑥𝐴𝑥} ⊆ {𝐴})
61, 5ax-mp 5 . 2 {𝑥𝐴𝑥} ⊆ {𝐴}
73elintab 4856 . . . 4 (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥))
8 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
97, 8mpgbir 1807 . . 3 𝐴 {𝑥𝐴𝑥}
10 snssi 4707 . . 3 (𝐴 {𝑥𝐴𝑥} → {𝐴} ⊆ {𝑥𝐴𝑥})
119, 10ax-mp 5 . 2 {𝐴} ⊆ {𝑥𝐴𝑥}
126, 11eqssi 3903 1 {𝑥𝐴𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  {cab 2714  Vcvv 3398  wss 3853  {csn 4527   cint 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528  df-pr 4530  df-int 4846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator