MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intid Structured version   Visualization version   GIF version

Theorem intid 5203
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1 𝐴 ∈ V
Assertion
Ref Expression
intid {𝑥𝐴𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem intid
StepHypRef Expression
1 snex 5184 . . 3 {𝐴} ∈ V
2 eleq2 2848 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
3 intid.1 . . . . 5 𝐴 ∈ V
43snid 4469 . . . 4 𝐴 ∈ {𝐴}
52, 4intmin3 4773 . . 3 ({𝐴} ∈ V → {𝑥𝐴𝑥} ⊆ {𝐴})
61, 5ax-mp 5 . 2 {𝑥𝐴𝑥} ⊆ {𝐴}
73elintab 4756 . . . 4 (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥))
8 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
97, 8mpgbir 1762 . . 3 𝐴 {𝑥𝐴𝑥}
10 snssi 4611 . . 3 (𝐴 {𝑥𝐴𝑥} → {𝐴} ⊆ {𝑥𝐴𝑥})
119, 10ax-mp 5 . 2 {𝐴} ⊆ {𝑥𝐴𝑥}
126, 11eqssi 3868 1 {𝑥𝐴𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  {cab 2752  Vcvv 3409  wss 3823  {csn 4435   cint 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-v 3411  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-sn 4436  df-pr 4438  df-int 4746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator