MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inuni Structured version   Visualization version   GIF version

Theorem inuni 5330
Description: The intersection of a union 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 15-May-2025.)
Assertion
Ref Expression
inuni ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem inuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . 5 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
2 r19.41v 3176 . . . . 5 (∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
31, 2bitr4i 278 . . . 4 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
43exbii 1847 . . 3 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
5 eluniab 4901 . . 3 (𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
6 eluni2 4891 . . . . . 6 (𝑧 𝐴 ↔ ∃𝑦𝐴 𝑧𝑦)
76anbi1i 624 . . . . 5 ((𝑧 𝐴𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
8 elin 3947 . . . . 5 (𝑧 ∈ ( 𝐴𝐵) ↔ (𝑧 𝐴𝑧𝐵))
9 r19.41v 3176 . . . . 5 (∃𝑦𝐴 (𝑧𝑦𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
107, 8, 93bitr4i 303 . . . 4 (𝑧 ∈ ( 𝐴𝐵) ↔ ∃𝑦𝐴 (𝑧𝑦𝑧𝐵))
11 vex 3467 . . . . . . . 8 𝑦 ∈ V
1211inex1 5297 . . . . . . 7 (𝑦𝐵) ∈ V
13 eleq2 2822 . . . . . . 7 (𝑥 = (𝑦𝐵) → (𝑧𝑥𝑧 ∈ (𝑦𝐵)))
1412, 13ceqsexv 3515 . . . . . 6 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ 𝑧 ∈ (𝑦𝐵))
15 elin 3947 . . . . . 6 (𝑧 ∈ (𝑦𝐵) ↔ (𝑧𝑦𝑧𝐵))
1614, 15bitri 275 . . . . 5 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (𝑧𝑦𝑧𝐵))
1716rexbii 3082 . . . 4 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑦𝐴 (𝑧𝑦𝑧𝐵))
18 rexcom4 3272 . . . 4 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
1910, 17, 183bitr2i 299 . . 3 (𝑧 ∈ ( 𝐴𝐵) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
204, 5, 193bitr4ri 304 . 2 (𝑧 ∈ ( 𝐴𝐵) ↔ 𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)})
2120eqriv 2731 1 ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wrex 3059  cin 3930   cuni 4887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rex 3060  df-v 3465  df-in 3938  df-uni 4888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator