MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inuni Structured version   Visualization version   GIF version

Theorem inuni 5267
Description: The intersection of a union 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem inuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eluni2 4843 . . . . 5 (𝑧 𝐴 ↔ ∃𝑦𝐴 𝑧𝑦)
21anbi1i 624 . . . 4 ((𝑧 𝐴𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
3 elin 3903 . . . 4 (𝑧 ∈ ( 𝐴𝐵) ↔ (𝑧 𝐴𝑧𝐵))
4 ancom 461 . . . . . . . 8 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
5 r19.41v 3276 . . . . . . . 8 (∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
64, 5bitr4i 277 . . . . . . 7 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
76exbii 1850 . . . . . 6 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
8 rexcom4 3233 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
97, 8bitr4i 277 . . . . 5 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
10 vex 3436 . . . . . . . . . 10 𝑦 ∈ V
1110inex1 5241 . . . . . . . . 9 (𝑦𝐵) ∈ V
12 eleq2 2827 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (𝑧𝑥𝑧 ∈ (𝑦𝐵)))
1311, 12ceqsexv 3479 . . . . . . . 8 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ 𝑧 ∈ (𝑦𝐵))
14 elin 3903 . . . . . . . 8 (𝑧 ∈ (𝑦𝐵) ↔ (𝑧𝑦𝑧𝐵))
1513, 14bitri 274 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (𝑧𝑦𝑧𝐵))
1615rexbii 3181 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑦𝐴 (𝑧𝑦𝑧𝐵))
17 r19.41v 3276 . . . . . 6 (∃𝑦𝐴 (𝑧𝑦𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
1816, 17bitri 274 . . . . 5 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
199, 18bitri 274 . . . 4 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
202, 3, 193bitr4i 303 . . 3 (𝑧 ∈ ( 𝐴𝐵) ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
21 eluniab 4854 . . 3 (𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
2220, 21bitr4i 277 . 2 (𝑧 ∈ ( 𝐴𝐵) ↔ 𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)})
2322eqriv 2735 1 ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wrex 3065  cin 3886   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-in 3894  df-uni 4840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator