MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inuni Structured version   Visualization version   GIF version

Theorem inuni 5334
Description: The intersection of a union 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem inuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eluni2 4904 . . . . 5 (𝑧 𝐴 ↔ ∃𝑦𝐴 𝑧𝑦)
21anbi1i 623 . . . 4 ((𝑧 𝐴𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
3 elin 3957 . . . 4 (𝑧 ∈ ( 𝐴𝐵) ↔ (𝑧 𝐴𝑧𝐵))
4 ancom 460 . . . . . . . 8 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
5 r19.41v 3180 . . . . . . . 8 (∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
64, 5bitr4i 278 . . . . . . 7 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
76exbii 1842 . . . . . 6 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
8 rexcom4 3277 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
97, 8bitr4i 278 . . . . 5 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
10 vex 3470 . . . . . . . . . 10 𝑦 ∈ V
1110inex1 5308 . . . . . . . . 9 (𝑦𝐵) ∈ V
12 eleq2 2814 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (𝑧𝑥𝑧 ∈ (𝑦𝐵)))
1311, 12ceqsexv 3518 . . . . . . . 8 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ 𝑧 ∈ (𝑦𝐵))
14 elin 3957 . . . . . . . 8 (𝑧 ∈ (𝑦𝐵) ↔ (𝑧𝑦𝑧𝐵))
1513, 14bitri 275 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (𝑧𝑦𝑧𝐵))
1615rexbii 3086 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑦𝐴 (𝑧𝑦𝑧𝐵))
17 r19.41v 3180 . . . . . 6 (∃𝑦𝐴 (𝑧𝑦𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
1816, 17bitri 275 . . . . 5 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
199, 18bitri 275 . . . 4 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
202, 3, 193bitr4i 303 . . 3 (𝑧 ∈ ( 𝐴𝐵) ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
21 eluniab 4914 . . 3 (𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
2220, 21bitr4i 278 . 2 (𝑧 ∈ ( 𝐴𝐵) ↔ 𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)})
2322eqriv 2721 1 ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wex 1773  wcel 2098  {cab 2701  wrex 3062  cin 3940   cuni 4900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rex 3063  df-v 3468  df-in 3948  df-uni 4901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator