| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotassuniOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iotassuni 6514 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iotassuniOLD | ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni 6517 | . . 3 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | eqimss 4024 | . . 3 ⊢ ((℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 4 | iotanul 6520 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 5 | 0ss 4382 | . . 3 ⊢ ∅ ⊆ ∪ {𝑥 ∣ 𝜑} | |
| 6 | 4, 5 | eqsstrdi 4010 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∃!weu 2566 {cab 2712 ⊆ wss 3933 ∅c0 4315 ∪ cuni 4889 ℩cio 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |