MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuniOLD Structured version   Visualization version   GIF version

Theorem iotassuniOLD 6492
Description: Obsolete version of iotassuni 6485 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iotassuniOLD (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuniOLD
StepHypRef Expression
1 iotauni 6488 . . 3 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 4007 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul 6491 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
5 0ss 4365 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 3993 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  ∃!weu 2562  {cab 2708  wss 3916  c0 4298   cuni 4873  cio 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-sn 4592  df-pr 4594  df-uni 4874  df-iota 6466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator