MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuniOLD Structured version   Visualization version   GIF version

Theorem iotassuniOLD 6545
Description: Obsolete version of iotassuni 6538 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iotassuniOLD (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuniOLD
StepHypRef Expression
1 iotauni 6541 . . 3 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 4055 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul 6544 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
5 0ss 4407 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 4051 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  ∃!weu 2567  {cab 2713  wss 3964  c0 4340   cuni 4913  cio 6517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-sn 4633  df-pr 4635  df-uni 4914  df-iota 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator