![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotassuniOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iotassuni 6512 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iotassuniOLD | ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotauni 6515 | . . 3 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
2 | eqimss 4039 | . . 3 ⊢ ((℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
4 | iotanul 6518 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
5 | 0ss 4395 | . . 3 ⊢ ∅ ⊆ ∪ {𝑥 ∣ 𝜑} | |
6 | 4, 5 | eqsstrdi 4035 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∃!weu 2563 {cab 2710 ⊆ wss 3947 ∅c0 4321 ∪ cuni 4907 ℩cio 6490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-uni 4908 df-iota 6492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |