| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotassuniOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iotassuni 6485 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iotassuniOLD | ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni 6488 | . . 3 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | eqimss 4007 | . . 3 ⊢ ((℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 4 | iotanul 6491 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 5 | 0ss 4365 | . . 3 ⊢ ∅ ⊆ ∪ {𝑥 ∣ 𝜑} | |
| 6 | 4, 5 | eqsstrdi 3993 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃!weu 2562 {cab 2708 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 ℩cio 6464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-sn 4592 df-pr 4594 df-uni 4874 df-iota 6466 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |