MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuniOLD Structured version   Visualization version   GIF version

Theorem iotassuniOLD 6523
Description: Obsolete version of iotassuni 6516 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iotassuniOLD (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuniOLD
StepHypRef Expression
1 iotauni 6519 . . 3 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 4041 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul 6522 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
5 0ss 4397 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 4037 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  ∃!weu 2561  {cab 2708  wss 3949  c0 4323   cuni 4909  cio 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-sn 4630  df-pr 4632  df-uni 4910  df-iota 6496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator