Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotassuniOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iotassuni 6427 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iotassuniOLD | ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotauni 6430 | . . 3 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
2 | eqimss 3983 | . . 3 ⊢ ((℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
4 | iotanul 6433 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
5 | 0ss 4337 | . . 3 ⊢ ∅ ⊆ ∪ {𝑥 ∣ 𝜑} | |
6 | 4, 5 | eqsstrdi 3981 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∃!weu 2566 {cab 2713 ⊆ wss 3893 ∅c0 4263 ∪ cuni 4845 ℩cio 6405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-v 3440 df-dif 3896 df-un 3898 df-in 3900 df-ss 3910 df-nul 4264 df-sn 4567 df-pr 4569 df-uni 4846 df-iota 6407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |