MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaexOLD Structured version   Visualization version   GIF version

Theorem iotaexOLD 6516
Description: Obsolete version of iotaex 6509 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iotaexOLD (℩𝑥𝜑) ∈ V

Proof of Theorem iotaexOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6507 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
21eqcomd 2742 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
32eximi 1835 . . 3 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑))
4 eu6 2574 . . 3 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
5 isset 3478 . . 3 ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑))
63, 4, 53imtr4i 292 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
7 iotanul 6514 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
8 0ex 5282 . . 3 ∅ ∈ V
97, 8eqeltrdi 2843 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
106, 9pm2.61i 182 1 (℩𝑥𝜑) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2568  Vcvv 3464  c0 4313  cio 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4889  df-iota 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator