MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaexOLD Structured version   Visualization version   GIF version

Theorem iotaexOLD 6546
Description: Obsolete version of iotaex 6539 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iotaexOLD (℩𝑥𝜑) ∈ V

Proof of Theorem iotaexOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6537 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
21eqcomd 2742 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
32eximi 1833 . . 3 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑))
4 eu6 2573 . . 3 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
5 isset 3493 . . 3 ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑))
63, 4, 53imtr4i 292 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
7 iotanul 6544 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
8 0ex 5314 . . 3 ∅ ∈ V
97, 8eqeltrdi 2848 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
106, 9pm2.61i 182 1 (℩𝑥𝜑) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1536   = wceq 1538  wex 1777  wcel 2107  ∃!weu 2567  Vcvv 3479  c0 4340  cio 6517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-nul 5313
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-sn 4633  df-pr 4635  df-uni 4914  df-iota 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator