![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iotaex 6510 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iotaexOLD | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6508 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
2 | 1 | eqcomd 2732 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
3 | 2 | eximi 1829 | . . 3 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑)) |
4 | eu6 2562 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
5 | isset 3481 | . . 3 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 292 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
7 | iotanul 6515 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
8 | 0ex 5300 | . . 3 ⊢ ∅ ∈ V | |
9 | 7, 8 | eqeltrdi 2835 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃!weu 2556 Vcvv 3468 ∅c0 4317 ℩cio 6487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-sn 4624 df-pr 4626 df-uni 4903 df-iota 6489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |