MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaexOLD Structured version   Visualization version   GIF version

Theorem iotaexOLD 6517
Description: Obsolete version of iotaex 6510 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iotaexOLD (℩𝑥𝜑) ∈ V

Proof of Theorem iotaexOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6508 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
21eqcomd 2732 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
32eximi 1829 . . 3 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑))
4 eu6 2562 . . 3 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
5 isset 3481 . . 3 ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑))
63, 4, 53imtr4i 292 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
7 iotanul 6515 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
8 0ex 5300 . . 3 ∅ ∈ V
97, 8eqeltrdi 2835 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
106, 9pm2.61i 182 1 (℩𝑥𝜑) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1531   = wceq 1533  wex 1773  wcel 2098  ∃!weu 2556  Vcvv 3468  c0 4317  cio 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-nul 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-sn 4624  df-pr 4626  df-uni 4903  df-iota 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator