| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaexOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iotaex 6509 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iotaexOLD | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval 6507 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
| 2 | 1 | eqcomd 2742 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
| 3 | 2 | eximi 1835 | . . 3 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑)) |
| 4 | eu6 2574 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 5 | isset 3478 | . . 3 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| 7 | iotanul 6514 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 8 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 9 | 7, 8 | eqeltrdi 2843 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| 10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 Vcvv 3464 ∅c0 4313 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |