| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaexOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iotaex 6515 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iotaexOLD | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval 6513 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
| 2 | 1 | eqcomd 2740 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
| 3 | 2 | eximi 1834 | . . 3 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑)) |
| 4 | eu6 2572 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 5 | isset 3478 | . . 3 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| 7 | iotanul 6520 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 8 | 0ex 5289 | . . 3 ⊢ ∅ ∈ V | |
| 9 | 7, 8 | eqeltrdi 2841 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| 10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 Vcvv 3464 ∅c0 4315 ℩cio 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |