MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem1 Structured version   Visualization version   GIF version

Theorem tsmsxplem1 24040
Description: Lemma for tsmsxp 24042. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
tsmsxp.j 𝐽 = (TopOpen‘𝐺)
tsmsxp.z 0 = (0g𝐺)
tsmsxp.p + = (+g𝐺)
tsmsxp.m = (-g𝐺)
tsmsxp.l (𝜑𝐿𝐽)
tsmsxp.3 (𝜑0𝐿)
tsmsxp.k (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
tsmsxp.ks (𝜑 → dom 𝐷𝐾)
tsmsxp.d (𝜑𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
Assertion
Ref Expression
tsmsxplem1 (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷𝑛 ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿))
Distinct variable groups:   0 ,𝑘   𝑗,𝑘,𝑛,𝑥,𝐺   𝐵,𝑘   𝐷,𝑗,𝑘,𝑛,𝑥   𝑗,𝐿,𝑛,𝑥   𝐴,𝑗,𝑘,𝑛   𝑗,𝐾,𝑘,𝑛,𝑥   𝑗,𝐻,𝑘,𝑛,𝑥   ,𝑗,𝑛,𝑥   𝐶,𝑗,𝑘,𝑛   𝑗,𝐹,𝑘,𝑛,𝑥   𝜑,𝑗,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥,𝑗,𝑛)   𝐶(𝑥)   + (𝑥,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑗,𝑘,𝑛)   𝐿(𝑘)   (𝑘)   𝑉(𝑥,𝑗,𝑘,𝑛)   𝑊(𝑥,𝑗,𝑘,𝑛)   0 (𝑥,𝑗,𝑛)

Proof of Theorem tsmsxplem1
Dummy variables 𝑔 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.k . . . 4 (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
21elin2d 4168 . . 3 (𝜑𝐾 ∈ Fin)
3 elfpw 9305 . . . . . . . 8 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾𝐴𝐾 ∈ Fin))
43simplbi 497 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾𝐴)
51, 4syl 17 . . . . . 6 (𝜑𝐾𝐴)
65sselda 3946 . . . . 5 ((𝜑𝑗𝐾) → 𝑗𝐴)
7 tsmsxp.b . . . . . 6 𝐵 = (Base‘𝐺)
8 tsmsxp.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
9 eqid 2729 . . . . . 6 (𝒫 𝐶 ∩ Fin) = (𝒫 𝐶 ∩ Fin)
10 tsmsxp.g . . . . . . 7 (𝜑𝐺 ∈ CMnd)
1110adantr 480 . . . . . 6 ((𝜑𝑗𝐴) → 𝐺 ∈ CMnd)
12 tsmsxp.2 . . . . . . . 8 (𝜑𝐺 ∈ TopGrp)
13 tgptps 23967 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
1412, 13syl 17 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
1514adantr 480 . . . . . 6 ((𝜑𝑗𝐴) → 𝐺 ∈ TopSp)
16 tsmsxp.c . . . . . . 7 (𝜑𝐶𝑊)
1716adantr 480 . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
18 tsmsxp.f . . . . . . . . 9 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
19 fovcdm 7559 . . . . . . . . 9 ((𝐹:(𝐴 × 𝐶)⟶𝐵𝑗𝐴𝑘𝐶) → (𝑗𝐹𝑘) ∈ 𝐵)
2018, 19syl3an1 1163 . . . . . . . 8 ((𝜑𝑗𝐴𝑘𝐶) → (𝑗𝐹𝑘) ∈ 𝐵)
21203expa 1118 . . . . . . 7 (((𝜑𝑗𝐴) ∧ 𝑘𝐶) → (𝑗𝐹𝑘) ∈ 𝐵)
2221fmpttd 7087 . . . . . 6 ((𝜑𝑗𝐴) → (𝑘𝐶 ↦ (𝑗𝐹𝑘)):𝐶𝐵)
23 tsmsxp.1 . . . . . 6 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
24 df-ima 5651 . . . . . . . 8 ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) “ 𝐿) = ran ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) ↾ 𝐿)
258, 7tgptopon 23969 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
2612, 25syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝐵))
27 tsmsxp.l . . . . . . . . . . . 12 (𝜑𝐿𝐽)
28 toponss 22814 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐿𝐽) → 𝐿𝐵)
2926, 27, 28syl2anc 584 . . . . . . . . . . 11 (𝜑𝐿𝐵)
3029adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐿𝐵)
3130resmptd 6011 . . . . . . . . 9 ((𝜑𝑗𝐴) → ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) ↾ 𝐿) = (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))
3231rneqd 5902 . . . . . . . 8 ((𝜑𝑗𝐴) → ran ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) ↾ 𝐿) = ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))
3324, 32eqtrid 2776 . . . . . . 7 ((𝜑𝑗𝐴) → ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) “ 𝐿) = ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))
34 tsmsxp.h . . . . . . . . . . . . 13 (𝜑𝐻:𝐴𝐵)
3534ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ 𝐵)
36 tsmsxp.p . . . . . . . . . . . . 13 + = (+g𝐺)
37 eqid 2729 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
38 tsmsxp.m . . . . . . . . . . . . 13 = (-g𝐺)
397, 36, 37, 38grpsubval 18917 . . . . . . . . . . . 12 (((𝐻𝑗) ∈ 𝐵𝑔𝐵) → ((𝐻𝑗) 𝑔) = ((𝐻𝑗) + ((invg𝐺)‘𝑔)))
4035, 39sylan 580 . . . . . . . . . . 11 (((𝜑𝑗𝐴) ∧ 𝑔𝐵) → ((𝐻𝑗) 𝑔) = ((𝐻𝑗) + ((invg𝐺)‘𝑔)))
4140mpteq2dva 5200 . . . . . . . . . 10 ((𝜑𝑗𝐴) → (𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) = (𝑔𝐵 ↦ ((𝐻𝑗) + ((invg𝐺)‘𝑔))))
42 tgpgrp 23965 . . . . . . . . . . . . . 14 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
4312, 42syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
4443adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → 𝐺 ∈ Grp)
457, 37grpinvcl 18919 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑔𝐵) → ((invg𝐺)‘𝑔) ∈ 𝐵)
4644, 45sylan 580 . . . . . . . . . . 11 (((𝜑𝑗𝐴) ∧ 𝑔𝐵) → ((invg𝐺)‘𝑔) ∈ 𝐵)
477, 37grpinvf 18918 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (invg𝐺):𝐵𝐵)
4844, 47syl 17 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → (invg𝐺):𝐵𝐵)
4948feqmptd 6929 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → (invg𝐺) = (𝑔𝐵 ↦ ((invg𝐺)‘𝑔)))
50 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) = (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)))
51 oveq2 7395 . . . . . . . . . . 11 (𝑦 = ((invg𝐺)‘𝑔) → ((𝐻𝑗) + 𝑦) = ((𝐻𝑗) + ((invg𝐺)‘𝑔)))
5246, 49, 50, 51fmptco 7101 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∘ (invg𝐺)) = (𝑔𝐵 ↦ ((𝐻𝑗) + ((invg𝐺)‘𝑔))))
5341, 52eqtr4d 2767 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) = ((𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∘ (invg𝐺)))
5412adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → 𝐺 ∈ TopGrp)
558, 37grpinvhmeo 23973 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽Homeo𝐽))
5654, 55syl 17 . . . . . . . . . 10 ((𝜑𝑗𝐴) → (invg𝐺) ∈ (𝐽Homeo𝐽))
57 eqid 2729 . . . . . . . . . . . 12 (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) = (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦))
5857, 7, 36, 8tgplacthmeo 23990 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ (𝐻𝑗) ∈ 𝐵) → (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∈ (𝐽Homeo𝐽))
5954, 35, 58syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝐴) → (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∈ (𝐽Homeo𝐽))
60 hmeoco 23659 . . . . . . . . . 10 (((invg𝐺) ∈ (𝐽Homeo𝐽) ∧ (𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∈ (𝐽Homeo𝐽)) → ((𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6156, 59, 60syl2anc 584 . . . . . . . . 9 ((𝜑𝑗𝐴) → ((𝑦𝐵 ↦ ((𝐻𝑗) + 𝑦)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6253, 61eqeltrd 2828 . . . . . . . 8 ((𝜑𝑗𝐴) → (𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) ∈ (𝐽Homeo𝐽))
6327adantr 480 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝐿𝐽)
64 hmeoima 23652 . . . . . . . 8 (((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) ∈ (𝐽Homeo𝐽) ∧ 𝐿𝐽) → ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) “ 𝐿) ∈ 𝐽)
6562, 63, 64syl2anc 584 . . . . . . 7 ((𝜑𝑗𝐴) → ((𝑔𝐵 ↦ ((𝐻𝑗) 𝑔)) “ 𝐿) ∈ 𝐽)
6633, 65eqeltrrd 2829 . . . . . 6 ((𝜑𝑗𝐴) → ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) ∈ 𝐽)
67 tsmsxp.z . . . . . . . . 9 0 = (0g𝐺)
687, 67, 38grpsubid1 18957 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐻𝑗) ∈ 𝐵) → ((𝐻𝑗) 0 ) = (𝐻𝑗))
6944, 35, 68syl2anc 584 . . . . . . 7 ((𝜑𝑗𝐴) → ((𝐻𝑗) 0 ) = (𝐻𝑗))
70 tsmsxp.3 . . . . . . . . 9 (𝜑0𝐿)
7170adantr 480 . . . . . . . 8 ((𝜑𝑗𝐴) → 0𝐿)
72 ovex 7420 . . . . . . . 8 ((𝐻𝑗) 0 ) ∈ V
73 eqid 2729 . . . . . . . . 9 (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) = (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))
74 oveq2 7395 . . . . . . . . 9 (𝑔 = 0 → ((𝐻𝑗) 𝑔) = ((𝐻𝑗) 0 ))
7573, 74elrnmpt1s 5923 . . . . . . . 8 (( 0𝐿 ∧ ((𝐻𝑗) 0 ) ∈ V) → ((𝐻𝑗) 0 ) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))
7671, 72, 75sylancl 586 . . . . . . 7 ((𝜑𝑗𝐴) → ((𝐻𝑗) 0 ) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))
7769, 76eqeltrrd 2829 . . . . . 6 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))
787, 8, 9, 11, 15, 17, 22, 23, 66, 77tsmsi 24021 . . . . 5 ((𝜑𝑗𝐴) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
796, 78syldan 591 . . . 4 ((𝜑𝑗𝐾) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
8079ralrimiva 3125 . . 3 (𝜑 → ∀𝑗𝐾𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
81 sseq1 3972 . . . . . 6 (𝑦 = (𝑓𝑗) → (𝑦𝑧 ↔ (𝑓𝑗) ⊆ 𝑧))
8281imbi1d 341 . . . . 5 (𝑦 = (𝑓𝑗) → ((𝑦𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) ↔ ((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))))
8382ralbidv 3156 . . . 4 (𝑦 = (𝑓𝑗) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) ↔ ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))))
8483ac6sfi 9231 . . 3 ((𝐾 ∈ Fin ∧ ∀𝑗𝐾𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))) → ∃𝑓(𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))))
852, 80, 84syl2anc 584 . 2 (𝜑 → ∃𝑓(𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)))))
86 frn 6695 . . . . . . . . 9 (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝐶 ∩ Fin))
8786adantl 481 . . . . . . . 8 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ⊆ (𝒫 𝐶 ∩ Fin))
88 inss1 4200 . . . . . . . 8 (𝒫 𝐶 ∩ Fin) ⊆ 𝒫 𝐶
8987, 88sstrdi 3959 . . . . . . 7 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ⊆ 𝒫 𝐶)
90 sspwuni 5064 . . . . . . 7 (ran 𝑓 ⊆ 𝒫 𝐶 ran 𝑓𝐶)
9189, 90sylib 218 . . . . . 6 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓𝐶)
92 tsmsxp.d . . . . . . . . 9 (𝜑𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
93 elfpw 9305 . . . . . . . . . 10 (𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝐷 ⊆ (𝐴 × 𝐶) ∧ 𝐷 ∈ Fin))
9493simplbi 497 . . . . . . . . 9 (𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝐷 ⊆ (𝐴 × 𝐶))
95 rnss 5903 . . . . . . . . 9 (𝐷 ⊆ (𝐴 × 𝐶) → ran 𝐷 ⊆ ran (𝐴 × 𝐶))
9692, 94, 953syl 18 . . . . . . . 8 (𝜑 → ran 𝐷 ⊆ ran (𝐴 × 𝐶))
97 rnxpss 6145 . . . . . . . 8 ran (𝐴 × 𝐶) ⊆ 𝐶
9896, 97sstrdi 3959 . . . . . . 7 (𝜑 → ran 𝐷𝐶)
9998adantr 480 . . . . . 6 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝐷𝐶)
10091, 99unssd 4155 . . . . 5 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ( ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶)
1012adantr 480 . . . . . . . 8 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐾 ∈ Fin)
102 ffn 6688 . . . . . . . . . 10 (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) → 𝑓 Fn 𝐾)
103102adantl 481 . . . . . . . . 9 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑓 Fn 𝐾)
104 dffn4 6778 . . . . . . . . 9 (𝑓 Fn 𝐾𝑓:𝐾onto→ran 𝑓)
105103, 104sylib 218 . . . . . . . 8 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑓:𝐾onto→ran 𝑓)
106 fofi 9262 . . . . . . . 8 ((𝐾 ∈ Fin ∧ 𝑓:𝐾onto→ran 𝑓) → ran 𝑓 ∈ Fin)
107101, 105, 106syl2anc 584 . . . . . . 7 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ∈ Fin)
108 inss2 4201 . . . . . . . 8 (𝒫 𝐶 ∩ Fin) ⊆ Fin
10987, 108sstrdi 3959 . . . . . . 7 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ⊆ Fin)
110 unifi 9295 . . . . . . 7 ((ran 𝑓 ∈ Fin ∧ ran 𝑓 ⊆ Fin) → ran 𝑓 ∈ Fin)
111107, 109, 110syl2anc 584 . . . . . 6 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ∈ Fin)
112 elinel2 4165 . . . . . . . 8 (𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝐷 ∈ Fin)
113 rnfi 9291 . . . . . . . 8 (𝐷 ∈ Fin → ran 𝐷 ∈ Fin)
11492, 112, 1133syl 18 . . . . . . 7 (𝜑 → ran 𝐷 ∈ Fin)
115114adantr 480 . . . . . 6 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝐷 ∈ Fin)
116 unfi 9135 . . . . . 6 (( ran 𝑓 ∈ Fin ∧ ran 𝐷 ∈ Fin) → ( ran 𝑓 ∪ ran 𝐷) ∈ Fin)
117111, 115, 116syl2anc 584 . . . . 5 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ( ran 𝑓 ∪ ran 𝐷) ∈ Fin)
118 elfpw 9305 . . . . 5 (( ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin) ↔ (( ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶 ∧ ( ran 𝑓 ∪ ran 𝐷) ∈ Fin))
119100, 117, 118sylanbrc 583 . . . 4 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ( ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin))
120119adantrr 717 . . 3 ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))) → ( ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin))
121 ssun2 4142 . . . 4 ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷)
122121a1i 11 . . 3 ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))) → ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷))
123119adantlr 715 . . . . . . . . 9 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ( ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin))
124 fvssunirn 6891 . . . . . . . . . . . . . 14 (𝑓𝑗) ⊆ ran 𝑓
125 ssun1 4141 . . . . . . . . . . . . . 14 ran 𝑓 ⊆ ( ran 𝑓 ∪ ran 𝐷)
126124, 125sstri 3956 . . . . . . . . . . . . 13 (𝑓𝑗) ⊆ ( ran 𝑓 ∪ ran 𝐷)
127 id 22 . . . . . . . . . . . . 13 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → 𝑧 = ( ran 𝑓 ∪ ran 𝐷))
128126, 127sseqtrrid 3990 . . . . . . . . . . . 12 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → (𝑓𝑗) ⊆ 𝑧)
129 pm5.5 361 . . . . . . . . . . . 12 ((𝑓𝑗) ⊆ 𝑧 → (((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) ↔ (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
130128, 129syl 17 . . . . . . . . . . 11 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → (((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) ↔ (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
131 reseq2 5945 . . . . . . . . . . . . 13 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧) = ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷)))
132131oveq2d 7403 . . . . . . . . . . . 12 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) = (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))))
133132eleq1d 2813 . . . . . . . . . . 11 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → ((𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) ↔ (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
134130, 133bitrd 279 . . . . . . . . . 10 (𝑧 = ( ran 𝑓 ∪ ran 𝐷) → (((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) ↔ (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
135134rspcv 3584 . . . . . . . . 9 (( ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
136123, 135syl 17 . . . . . . . 8 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
13710ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd)
138 cmnmnd 19727 . . . . . . . . . . . . 13 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
139137, 138syl 17 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ Mnd)
140 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑗𝐾)
141117adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ( ran 𝑓 ∪ ran 𝐷) ∈ Fin)
142100adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ( ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶)
143142sselda 3946 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → 𝑘𝐶)
14418adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
145144, 6jca 511 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐾) → (𝐹:(𝐴 × 𝐶)⟶𝐵𝑗𝐴))
146193expa 1118 . . . . . . . . . . . . . . . . 17 (((𝐹:(𝐴 × 𝐶)⟶𝐵𝑗𝐴) ∧ 𝑘𝐶) → (𝑗𝐹𝑘) ∈ 𝐵)
147145, 146sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐾) ∧ 𝑘𝐶) → (𝑗𝐹𝑘) ∈ 𝐵)
148147adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘𝐶) → (𝑗𝐹𝑘) ∈ 𝐵)
149143, 148syldan 591 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → (𝑗𝐹𝑘) ∈ 𝐵)
150149fmpttd 7087 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)):( ran 𝑓 ∪ ran 𝐷)⟶𝐵)
151 eqid 2729 . . . . . . . . . . . . . 14 (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))
152 ovexd 7422 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → (𝑗𝐹𝑘) ∈ V)
15367fvexi 6872 . . . . . . . . . . . . . . 15 0 ∈ V
154153a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 0 ∈ V)
155151, 141, 152, 154fsuppmptdm 9327 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)) finSupp 0 )
1567, 67, 137, 141, 150, 155gsumcl 19845 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
157 velsn 4605 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑗} ↔ 𝑦 = 𝑗)
158 ovres 7555 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ {𝑗} ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘) = (𝑦𝐹𝑘))
159157, 158sylanbr 582 . . . . . . . . . . . . . . . 16 ((𝑦 = 𝑗𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘) = (𝑦𝐹𝑘))
160 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑗 → (𝑦𝐹𝑘) = (𝑗𝐹𝑘))
161160adantr 480 . . . . . . . . . . . . . . . 16 ((𝑦 = 𝑗𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → (𝑦𝐹𝑘) = (𝑗𝐹𝑘))
162159, 161eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑦 = 𝑗𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷)) → (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘) = (𝑗𝐹𝑘))
163162mpteq2dva 5200 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘)) = (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)))
164163oveq2d 7403 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘))) = (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))))
1657, 164gsumsn 19884 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑗𝐾 ∧ (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) → (𝐺 Σg (𝑦 ∈ {𝑗} ↦ (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘))))) = (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))))
166139, 140, 156, 165syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝑦 ∈ {𝑗} ↦ (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘))))) = (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))))
167 snfi 9014 . . . . . . . . . . . . 13 {𝑗} ∈ Fin
168167a1i 11 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → {𝑗} ∈ Fin)
16918ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
1706adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑗𝐴)
171170snssd 4773 . . . . . . . . . . . . . 14 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → {𝑗} ⊆ 𝐴)
172 xpss12 5653 . . . . . . . . . . . . . 14 (({𝑗} ⊆ 𝐴 ∧ ( ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶) → ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)) ⊆ (𝐴 × 𝐶))
173171, 142, 172syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)) ⊆ (𝐴 × 𝐶))
174169, 173fssresd 6727 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))):({𝑗} × ( ran 𝑓 ∪ ran 𝐷))⟶𝐵)
175 xpfi 9269 . . . . . . . . . . . . . 14 (({𝑗} ∈ Fin ∧ ( ran 𝑓 ∪ ran 𝐷) ∈ Fin) → ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)) ∈ Fin)
176167, 141, 175sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)) ∈ Fin)
177174, 176, 154fdmfifsupp 9326 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))) finSupp 0 )
1787, 67, 137, 168, 141, 174, 177gsumxp 19906 . . . . . . . . . . 11 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = (𝐺 Σg (𝑦 ∈ {𝑗} ↦ (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))𝑘))))))
179142resmptd 6011 . . . . . . . . . . . 12 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷)) = (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)))
180179oveq2d 7403 . . . . . . . . . . 11 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) = (𝐺 Σg (𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))))
181166, 178, 1803eqtr4rd 2775 . . . . . . . . . 10 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) = (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))))
182181eleq1d 2813 . . . . . . . . 9 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) ↔ (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))
183 ovex 7420 . . . . . . . . . . 11 ((𝐻𝑗) 𝑔) ∈ V
18473, 183elrnmpti 5926 . . . . . . . . . 10 ((𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) ↔ ∃𝑔𝐿 (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = ((𝐻𝑗) 𝑔))
185 isabl 19714 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
18643, 10, 185sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Abel)
187186ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → 𝐺 ∈ Abel)
1886, 35syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐾) → (𝐻𝑗) ∈ 𝐵)
189188ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → (𝐻𝑗) ∈ 𝐵)
19029ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐿𝐵)
191190sselda 3946 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → 𝑔𝐵)
1927, 38, 187, 189, 191ablnncan 19750 . . . . . . . . . . . . 13 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → ((𝐻𝑗) ((𝐻𝑗) 𝑔)) = 𝑔)
193 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → 𝑔𝐿)
194192, 193eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → ((𝐻𝑗) ((𝐻𝑗) 𝑔)) ∈ 𝐿)
195 oveq2 7395 . . . . . . . . . . . . 13 ((𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = ((𝐻𝑗) 𝑔) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) = ((𝐻𝑗) ((𝐻𝑗) 𝑔)))
196195eleq1d 2813 . . . . . . . . . . . 12 ((𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = ((𝐻𝑗) 𝑔) → (((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿 ↔ ((𝐻𝑗) ((𝐻𝑗) 𝑔)) ∈ 𝐿))
197194, 196syl5ibrcom 247 . . . . . . . . . . 11 ((((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔𝐿) → ((𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = ((𝐻𝑗) 𝑔) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
198197rexlimdva 3134 . . . . . . . . . 10 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∃𝑔𝐿 (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = ((𝐻𝑗) 𝑔) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
199184, 198biimtrid 242 . . . . . . . . 9 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
200182, 199sylbid 240 . . . . . . . 8 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ ( ran 𝑓 ∪ ran 𝐷))) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔)) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
201136, 200syld 47 . . . . . . 7 (((𝜑𝑗𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
202201an32s 652 . . . . . 6 (((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑗𝐾) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
203202ralimdva 3145 . . . . 5 ((𝜑𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))) → ∀𝑗𝐾 ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
204203impr 454 . . . 4 ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))) → ∀𝑗𝐾 ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿)
205 fveq2 6858 . . . . . . 7 (𝑗 = 𝑥 → (𝐻𝑗) = (𝐻𝑥))
206 sneq 4599 . . . . . . . . . 10 (𝑗 = 𝑥 → {𝑗} = {𝑥})
207206xpeq1d 5667 . . . . . . . . 9 (𝑗 = 𝑥 → ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)) = ({𝑥} × ( ran 𝑓 ∪ ran 𝐷)))
208207reseq2d 5950 . . . . . . . 8 (𝑗 = 𝑥 → (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))) = (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))
209208oveq2d 7403 . . . . . . 7 (𝑗 = 𝑥 → (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷)))) = (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷)))))
210205, 209oveq12d 7405 . . . . . 6 (𝑗 = 𝑥 → ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) = ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))))
211210eleq1d 2813 . . . . 5 (𝑗 = 𝑥 → (((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿 ↔ ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
212211cbvralvw 3215 . . . 4 (∀𝑗𝐾 ((𝐻𝑗) (𝐺 Σg (𝐹 ↾ ({𝑗} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿 ↔ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿)
213204, 212sylib 218 . . 3 ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))) → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿)
214 sseq2 3973 . . . . 5 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → (ran 𝐷𝑛 ↔ ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷)))
215 xpeq2 5659 . . . . . . . . . 10 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → ({𝑥} × 𝑛) = ({𝑥} × ( ran 𝑓 ∪ ran 𝐷)))
216215reseq2d 5950 . . . . . . . . 9 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → (𝐹 ↾ ({𝑥} × 𝑛)) = (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))
217216oveq2d 7403 . . . . . . . 8 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛))) = (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷)))))
218217oveq2d 7403 . . . . . . 7 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) = ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))))
219218eleq1d 2813 . . . . . 6 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → (((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿 ↔ ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
220219ralbidv 3156 . . . . 5 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → (∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿 ↔ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿))
221214, 220anbi12d 632 . . . 4 (𝑛 = ( ran 𝑓 ∪ ran 𝐷) → ((ran 𝐷𝑛 ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿) ↔ (ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷) ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿)))
222221rspcev 3588 . . 3 ((( ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷) ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × ( ran 𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷𝑛 ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿))
223120, 122, 213, 222syl12anc 836 . 2 ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗𝐾𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔𝐿 ↦ ((𝐻𝑗) 𝑔))))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷𝑛 ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿))
22485, 223exlimddv 1935 1 (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷𝑛 ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cun 3912  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  +gcplusg 17220  TopOpenctopn 17384  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867  CMndccmn 19710  Abelcabl 19711  TopOnctopon 22797  TopSpctps 22819  Homeochmeo 23640  TopGrpctgp 23958   tsums ctsu 24013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-topgen 17406  df-mre 17547  df-mrc 17548  df-acs 17550  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-abl 19713  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-ntr 22907  df-nei 22985  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tmd 23959  df-tgp 23960  df-tsms 24014
This theorem is referenced by:  tsmsxp  24042
  Copyright terms: Public domain W3C validator