MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabld Structured version   Visualization version   GIF version

Theorem isabld 19381
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
isabld.b (𝜑𝐵 = (Base‘𝐺))
isabld.p (𝜑+ = (+g𝐺))
isabld.g (𝜑𝐺 ∈ Grp)
isabld.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabld (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabld
StepHypRef Expression
1 isabld.g . 2 (𝜑𝐺 ∈ Grp)
2 isabld.b . . 3 (𝜑𝐵 = (Base‘𝐺))
3 isabld.p . . 3 (𝜑+ = (+g𝐺))
41grpmndd 18570 . . 3 (𝜑𝐺 ∈ Mnd)
5 isabld.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
62, 3, 4, 5iscmnd 19380 . 2 (𝜑𝐺 ∈ CMnd)
7 isabl 19371 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
81, 6, 7sylanbrc 582 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  Grpcgrp 18558  CMndccmn 19367  Abelcabl 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-grp 18561  df-cmn 19369  df-abl 19370
This theorem is referenced by:  subgabl  19418  gex2abl  19433  cygabl  19472  cygablOLD  19473  ringabl  19800  lmodabl  20151  dchrabl  26383  tgrpabl  38744  erngdvlem2N  38982  erngdvlem2-rN  38990
  Copyright terms: Public domain W3C validator