MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabld Structured version   Visualization version   GIF version

Theorem isabld 19702
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
isabld.b (𝜑𝐵 = (Base‘𝐺))
isabld.p (𝜑+ = (+g𝐺))
isabld.g (𝜑𝐺 ∈ Grp)
isabld.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabld (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabld
StepHypRef Expression
1 isabld.g . 2 (𝜑𝐺 ∈ Grp)
2 isabld.b . . 3 (𝜑𝐵 = (Base‘𝐺))
3 isabld.p . . 3 (𝜑+ = (+g𝐺))
41grpmndd 18854 . . 3 (𝜑𝐺 ∈ Mnd)
5 isabld.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
62, 3, 4, 5iscmnd 19701 . 2 (𝜑𝐺 ∈ CMnd)
7 isabl 19691 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
81, 6, 7sylanbrc 583 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Grpcgrp 18841  CMndccmn 19687  Abelcabl 19688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-grp 18844  df-cmn 19689  df-abl 19690
This theorem is referenced by:  subgabl  19743  gex2abl  19758  cygabl  19798  ringabl  20194  lmodabl  20837  dchrabl  27187  tgrpabl  40790  erngdvlem2N  41028  erngdvlem2-rN  41036
  Copyright terms: Public domain W3C validator