| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabld | Structured version Visualization version GIF version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
| Ref | Expression |
|---|---|
| isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 4 | 1 | grpmndd 18844 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 6 | 2, 3, 4, 5 | iscmnd 19692 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 7 | isabl 19682 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 8 | 1, 6, 7 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 Grpcgrp 18831 CMndccmn 19678 Abelcabl 19679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-grp 18834 df-cmn 19680 df-abl 19681 |
| This theorem is referenced by: subgabl 19734 gex2abl 19749 cygabl 19789 ringabl 20185 lmodabl 20831 dchrabl 27182 tgrpabl 40750 erngdvlem2N 40988 erngdvlem2-rN 40996 |
| Copyright terms: Public domain | W3C validator |