Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isabld | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
Ref | Expression |
---|---|
isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
4 | 1 | grpmndd 18638 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
6 | 2, 3, 4, 5 | iscmnd 19448 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | isabl 19439 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
8 | 1, 6, 7 | sylanbrc 584 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 Grpcgrp 18626 CMndccmn 19435 Abelcabl 19436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-grp 18629 df-cmn 19437 df-abl 19438 |
This theorem is referenced by: subgabl 19486 gex2abl 19501 cygabl 19540 cygablOLD 19541 ringabl 19868 lmodabl 20219 dchrabl 26451 tgrpabl 38965 erngdvlem2N 39203 erngdvlem2-rN 39211 |
Copyright terms: Public domain | W3C validator |