![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabld | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
Ref | Expression |
---|---|
isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
4 | grpmnd 17744 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
7 | 2, 3, 5, 6 | iscmnd 18519 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
8 | isabl 18511 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
9 | 1, 7, 8 | sylanbrc 579 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 +gcplusg 16266 Mndcmnd 17608 Grpcgrp 17737 CMndccmn 18507 Abelcabl 18508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-iota 6065 df-fv 6110 df-ov 6882 df-grp 17740 df-cmn 18509 df-abl 18510 |
This theorem is referenced by: subgabl 18555 gex2abl 18568 cygabl 18606 ringabl 18895 lmodabl 19227 dchrabl 25330 tgrpabl 36771 erngdvlem2N 37009 erngdvlem2-rN 37017 |
Copyright terms: Public domain | W3C validator |