| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabld | Structured version Visualization version GIF version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
| Ref | Expression |
|---|---|
| isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 4 | 1 | grpmndd 18854 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 6 | 2, 3, 4, 5 | iscmnd 19701 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 7 | isabl 19691 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 8 | 1, 6, 7 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Grpcgrp 18841 CMndccmn 19687 Abelcabl 19688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-grp 18844 df-cmn 19689 df-abl 19690 |
| This theorem is referenced by: subgabl 19743 gex2abl 19758 cygabl 19798 ringabl 20194 lmodabl 20837 dchrabl 27187 tgrpabl 40790 erngdvlem2N 41028 erngdvlem2-rN 41036 |
| Copyright terms: Public domain | W3C validator |