MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmabl Structured version   Visualization version   GIF version

Theorem ghmabl 19750
Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmabl.3 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ghmabl (𝜑𝐻 ∈ Abel)
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmabl
StepHypRef Expression
1 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmabl.x . . 3 𝑋 = (Base‘𝐺)
3 ghmabl.y . . 3 𝑌 = (Base‘𝐻)
4 ghmabl.p . . 3 + = (+g𝐺)
5 ghmabl.q . . 3 = (+g𝐻)
6 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmabl.3 . . . 4 (𝜑𝐺 ∈ Abel)
8 ablgrp 19703 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
97, 8syl 17 . . 3 (𝜑𝐺 ∈ Grp)
101, 2, 3, 4, 5, 6, 9ghmgrp 18992 . 2 (𝜑𝐻 ∈ Grp)
11 ablcmn 19705 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
127, 11syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
132, 3, 4, 5, 1, 6, 12ghmcmn 19749 . 2 (𝜑𝐻 ∈ CMnd)
14 isabl 19702 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd))
1510, 13, 14sylanbrc 582 1 (𝜑𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  ontowfo 6534  cfv 6536  (class class class)co 7404  Basecbs 17151  +gcplusg 17204  Grpcgrp 18861  CMndccmn 19698  Abelcabl 19699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7360  df-ov 7407  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-cmn 19700  df-abl 19701
This theorem is referenced by:  efabl  26435
  Copyright terms: Public domain W3C validator