![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmabl | Structured version Visualization version GIF version |
Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmabl.p | ⊢ + = (+g‘𝐺) |
ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
ghmabl.3 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Ref | Expression |
---|---|
ghmabl | ⊢ (𝜑 → 𝐻 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
2 | ghmabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | ghmabl.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
4 | ghmabl.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | ghmabl.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
6 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
7 | ghmabl.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
8 | ablgrp 19827 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
10 | 1, 2, 3, 4, 5, 6, 9 | ghmgrp 19106 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
11 | ablcmn 19829 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
13 | 2, 3, 4, 5, 1, 6, 12 | ghmcmn 19873 | . 2 ⊢ (𝜑 → 𝐻 ∈ CMnd) |
14 | isabl 19826 | . 2 ⊢ (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)) | |
15 | 10, 13, 14 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐻 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 CMndccmn 19822 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 |
This theorem is referenced by: efabl 26610 |
Copyright terms: Public domain | W3C validator |