|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isabl2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| iscmn.b | ⊢ 𝐵 = (Base‘𝐺) | 
| iscmn.p | ⊢ + = (+g‘𝐺) | 
| Ref | Expression | 
|---|---|
| isabl2 | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isabl 19803 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | grpmnd 18959 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | iscmn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | iscmn.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 5 | 3, 4 | iscmn 19808 | . . . . 5 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | 
| 6 | 5 | baib 535 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | 
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | 
| 8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | 
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 Mndcmnd 18748 Grpcgrp 18952 CMndccmn 19799 Abelcabl 19800 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-grp 18955 df-cmn 19801 df-abl 19802 | 
| This theorem is referenced by: isabli 19815 invghm 19852 qusabl 19884 abl1 19885 imasabl 19895 archiabllem1 33201 archiabllem2 33205 | 
| Copyright terms: Public domain | W3C validator |