| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabl2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| iscmn.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| isabl2 | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19706 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | grpmnd 18863 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | iscmn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | iscmn.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 5 | 3, 4 | iscmn 19711 | . . . . 5 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 6 | 5 | baib 535 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Mndcmnd 18652 Grpcgrp 18856 CMndccmn 19702 Abelcabl 19703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-grp 18859 df-cmn 19704 df-abl 19705 |
| This theorem is referenced by: isabli 19718 invghm 19755 qusabl 19787 abl1 19788 imasabl 19798 archiabllem1 33173 archiabllem2 33177 |
| Copyright terms: Public domain | W3C validator |