![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabl2 | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group." (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
iscmn.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
isabl2 | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 18404 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | grpmnd 17637 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | iscmn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | iscmn.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
5 | 3, 4 | iscmn 18407 | . . . . 5 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
6 | 5 | baib 525 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
8 | 7 | pm5.32i 564 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
9 | 1, 8 | bitri 264 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 Mndcmnd 17502 Grpcgrp 17630 CMndccmn 18400 Abelcabl 18401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-ov 6799 df-grp 17633 df-cmn 18402 df-abl 18403 |
This theorem is referenced by: isabli 18414 invghm 18446 qusabl 18475 abl1 18476 archiabllem1 30087 archiabllem2 30091 |
Copyright terms: Public domain | W3C validator |