MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscls Structured version   Visualization version   GIF version

Theorem tgptsmscls 23501
Description: A sum in a topological group is uniquely determined up to a coset of cls({0}), which is a normal subgroup by clsnsg 23461, 0nsg 18971. (Contributed by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
tgptsmscls.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tgptsmscls (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋}))

Proof of Theorem tgptsmscls
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . . . . . 10 (𝜑𝐺 ∈ TopGrp)
21adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
3 tgpgrp 23429 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Grp)
5 eqid 2736 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
650subg 18953 . . . . . . . . . 10 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
74, 6syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
8 tgptsmscls.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
98clssubg 23460 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ {(0g𝐺)} ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺))
102, 7, 9syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺))
11 tgptsmscls.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
12 eqid 2736 . . . . . . . . 9 (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))
1311, 12eqger 18980 . . . . . . . 8 (((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺) → (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) Er 𝐵)
1410, 13syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) Er 𝐵)
15 tgptsmscls.1 . . . . . . . . . 10 (𝜑𝐺 ∈ CMnd)
16 tgptps 23431 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopSp)
18 tgptsmscls.a . . . . . . . . . 10 (𝜑𝐴𝑉)
19 tgptsmscls.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
2011, 15, 17, 18, 19tsmscl 23486 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2120sselda 3944 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥𝐵)
22 tgptsmscls.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
2320, 22sseldd 3945 . . . . . . . . 9 (𝜑𝑋𝐵)
2423adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋𝐵)
25 eqid 2736 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
2615adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
2718adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
2819adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
2922adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹))
30 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
3111, 25, 26, 2, 27, 28, 28, 29, 30tsmssub 23500 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑋(-g𝐺)𝑥) ∈ (𝐺 tsums (𝐹f (-g𝐺)𝐹)))
3228ffvelcdmda 7035 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3328feqmptd 6910 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3427, 32, 32, 33, 33offval2 7637 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐹f (-g𝐺)𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)(-g𝐺)(𝐹𝑘))))
354adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → 𝐺 ∈ Grp)
3611, 5, 25grpsubid 18831 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘)(-g𝐺)(𝐹𝑘)) = (0g𝐺))
3735, 32, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → ((𝐹𝑘)(-g𝐺)(𝐹𝑘)) = (0g𝐺))
3837mpteq2dva 5205 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ ((𝐹𝑘)(-g𝐺)(𝐹𝑘))) = (𝑘𝐴 ↦ (0g𝐺)))
3934, 38eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐹f (-g𝐺)𝐹) = (𝑘𝐴 ↦ (0g𝐺)))
4039oveq2d 7373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝐹f (-g𝐺)𝐹)) = (𝐺 tsums (𝑘𝐴 ↦ (0g𝐺))))
412, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopSp)
4211, 5grpidcl 18778 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
434, 42syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (0g𝐺) ∈ 𝐵)
4443adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → (0g𝐺) ∈ 𝐵)
4544fmpttd 7063 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ (0g𝐺)):𝐴𝐵)
46 fconstmpt 5694 . . . . . . . . . . . 12 (𝐴 × {(0g𝐺)}) = (𝑘𝐴 ↦ (0g𝐺))
47 fvexd 6857 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ V)
4818, 47fczfsuppd 9323 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(0g𝐺)}) finSupp (0g𝐺))
4948adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐴 × {(0g𝐺)}) finSupp (0g𝐺))
5046, 49eqbrtrrid 5141 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ (0g𝐺)) finSupp (0g𝐺))
5111, 5, 26, 41, 27, 45, 50, 8tsmsgsum 23490 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝑘𝐴 ↦ (0g𝐺))) = ((cls‘𝐽)‘{(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))}))
52 cmnmnd 19579 . . . . . . . . . . . . . 14 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5326, 52syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Mnd)
545gsumz 18646 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴 ↦ (0g𝐺))) = (0g𝐺))
5553, 27, 54syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 Σg (𝑘𝐴 ↦ (0g𝐺))) = (0g𝐺))
5655sneqd 4598 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))} = {(0g𝐺)})
5756fveq2d 6846 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))}) = ((cls‘𝐽)‘{(0g𝐺)}))
5840, 51, 573eqtrd 2780 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝐹f (-g𝐺)𝐹)) = ((cls‘𝐽)‘{(0g𝐺)}))
5931, 58eleqtrd 2840 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))
60 isabl 19566 . . . . . . . . . 10 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
614, 26, 60sylanbrc 583 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Abel)
6211subgss 18929 . . . . . . . . . 10 (((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺) → ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵)
6310, 62syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵)
6411, 25, 12eqgabl 19613 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵) → (𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋 ↔ (𝑥𝐵𝑋𝐵 ∧ (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))))
6561, 63, 64syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋 ↔ (𝑥𝐵𝑋𝐵 ∧ (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))))
6621, 24, 59, 65mpbir3and 1342 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋)
6714, 66ersym 8660 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥)
6812releqg 18977 . . . . . . 7 Rel (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))
69 relelec 8693 . . . . . . 7 (Rel (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) → (𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) ↔ 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥))
7068, 69ax-mp 5 . . . . . 6 (𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) ↔ 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥)
7167, 70sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})))
72 eqid 2736 . . . . . . 7 ((cls‘𝐽)‘{(0g𝐺)}) = ((cls‘𝐽)‘{(0g𝐺)})
7311, 8, 5, 12, 72snclseqg 23467 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑋𝐵) → [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = ((cls‘𝐽)‘{𝑋}))
742, 24, 73syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = ((cls‘𝐽)‘{𝑋}))
7571, 74eleqtrd 2840 . . . 4 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘{𝑋}))
7675ex 413 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘{𝑋})))
7776ssrdv 3950 . 2 (𝜑 → (𝐺 tsums 𝐹) ⊆ ((cls‘𝐽)‘{𝑋}))
7811, 8, 15, 17, 18, 19, 22tsmscls 23489 . 2 (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹))
7977, 78eqssd 3961 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  Rel wrel 5638  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615   Er wer 8645  [cec 8646   finSupp cfsupp 9305  Basecbs 17083  TopOpenctopn 17303  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  Grpcgrp 18748  -gcsg 18750  SubGrpcsubg 18922   ~QG cqg 18924  CMndccmn 19562  Abelcabl 19563  TopSpctps 22281  clsccl 22369  TopGrpctgp 23422   tsums ctsu 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-topgen 17325  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tmd 23423  df-tgp 23424  df-tsms 23478
This theorem is referenced by:  tgptsmscld  23502
  Copyright terms: Public domain W3C validator