MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscls Structured version   Visualization version   GIF version

Theorem tgptsmscls 24158
Description: A sum in a topological group is uniquely determined up to a coset of cls({0}), which is a normal subgroup by clsnsg 24118, 0nsg 19187. (Contributed by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
tgptsmscls.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tgptsmscls (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋}))

Proof of Theorem tgptsmscls
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . . . . . 10 (𝜑𝐺 ∈ TopGrp)
21adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
3 tgpgrp 24086 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Grp)
5 eqid 2737 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
650subg 19169 . . . . . . . . . 10 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
74, 6syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
8 tgptsmscls.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
98clssubg 24117 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ {(0g𝐺)} ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺))
102, 7, 9syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺))
11 tgptsmscls.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
12 eqid 2737 . . . . . . . . 9 (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))
1311, 12eqger 19196 . . . . . . . 8 (((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺) → (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) Er 𝐵)
1410, 13syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) Er 𝐵)
15 tgptsmscls.1 . . . . . . . . . 10 (𝜑𝐺 ∈ CMnd)
16 tgptps 24088 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopSp)
18 tgptsmscls.a . . . . . . . . . 10 (𝜑𝐴𝑉)
19 tgptsmscls.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
2011, 15, 17, 18, 19tsmscl 24143 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2120sselda 3983 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥𝐵)
22 tgptsmscls.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
2320, 22sseldd 3984 . . . . . . . . 9 (𝜑𝑋𝐵)
2423adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋𝐵)
25 eqid 2737 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
2615adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
2718adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
2819adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
2922adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹))
30 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
3111, 25, 26, 2, 27, 28, 28, 29, 30tsmssub 24157 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑋(-g𝐺)𝑥) ∈ (𝐺 tsums (𝐹f (-g𝐺)𝐹)))
3228ffvelcdmda 7104 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3328feqmptd 6977 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3427, 32, 32, 33, 33offval2 7717 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐹f (-g𝐺)𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)(-g𝐺)(𝐹𝑘))))
354adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → 𝐺 ∈ Grp)
3611, 5, 25grpsubid 19042 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘)(-g𝐺)(𝐹𝑘)) = (0g𝐺))
3735, 32, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → ((𝐹𝑘)(-g𝐺)(𝐹𝑘)) = (0g𝐺))
3837mpteq2dva 5242 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ ((𝐹𝑘)(-g𝐺)(𝐹𝑘))) = (𝑘𝐴 ↦ (0g𝐺)))
3934, 38eqtrd 2777 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐹f (-g𝐺)𝐹) = (𝑘𝐴 ↦ (0g𝐺)))
4039oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝐹f (-g𝐺)𝐹)) = (𝐺 tsums (𝑘𝐴 ↦ (0g𝐺))))
412, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopSp)
4211, 5grpidcl 18983 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
434, 42syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (0g𝐺) ∈ 𝐵)
4443adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → (0g𝐺) ∈ 𝐵)
4544fmpttd 7135 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ (0g𝐺)):𝐴𝐵)
46 fconstmpt 5747 . . . . . . . . . . . 12 (𝐴 × {(0g𝐺)}) = (𝑘𝐴 ↦ (0g𝐺))
47 fvexd 6921 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ V)
4818, 47fczfsuppd 9426 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(0g𝐺)}) finSupp (0g𝐺))
4948adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐴 × {(0g𝐺)}) finSupp (0g𝐺))
5046, 49eqbrtrrid 5179 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ (0g𝐺)) finSupp (0g𝐺))
5111, 5, 26, 41, 27, 45, 50, 8tsmsgsum 24147 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝑘𝐴 ↦ (0g𝐺))) = ((cls‘𝐽)‘{(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))}))
52 cmnmnd 19815 . . . . . . . . . . . . . 14 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5326, 52syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Mnd)
545gsumz 18849 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴 ↦ (0g𝐺))) = (0g𝐺))
5553, 27, 54syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 Σg (𝑘𝐴 ↦ (0g𝐺))) = (0g𝐺))
5655sneqd 4638 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))} = {(0g𝐺)})
5756fveq2d 6910 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))}) = ((cls‘𝐽)‘{(0g𝐺)}))
5840, 51, 573eqtrd 2781 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝐹f (-g𝐺)𝐹)) = ((cls‘𝐽)‘{(0g𝐺)}))
5931, 58eleqtrd 2843 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))
60 isabl 19802 . . . . . . . . . 10 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
614, 26, 60sylanbrc 583 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Abel)
6211subgss 19145 . . . . . . . . . 10 (((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺) → ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵)
6310, 62syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵)
6411, 25, 12eqgabl 19852 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵) → (𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋 ↔ (𝑥𝐵𝑋𝐵 ∧ (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))))
6561, 63, 64syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋 ↔ (𝑥𝐵𝑋𝐵 ∧ (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))))
6621, 24, 59, 65mpbir3and 1343 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋)
6714, 66ersym 8757 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥)
6812releqg 19193 . . . . . . 7 Rel (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))
69 relelec 8792 . . . . . . 7 (Rel (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) → (𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) ↔ 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥))
7068, 69ax-mp 5 . . . . . 6 (𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) ↔ 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥)
7167, 70sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})))
72 eqid 2737 . . . . . . 7 ((cls‘𝐽)‘{(0g𝐺)}) = ((cls‘𝐽)‘{(0g𝐺)})
7311, 8, 5, 12, 72snclseqg 24124 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑋𝐵) → [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = ((cls‘𝐽)‘{𝑋}))
742, 24, 73syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = ((cls‘𝐽)‘{𝑋}))
7571, 74eleqtrd 2843 . . . 4 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘{𝑋}))
7675ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘{𝑋})))
7776ssrdv 3989 . 2 (𝜑 → (𝐺 tsums 𝐹) ⊆ ((cls‘𝐽)‘{𝑋}))
7811, 8, 15, 17, 18, 19, 22tsmscls 24146 . 2 (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹))
7977, 78eqssd 4001 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  Rel wrel 5690  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695   Er wer 8742  [cec 8743   finSupp cfsupp 9401  Basecbs 17247  TopOpenctopn 17466  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138   ~QG cqg 19140  CMndccmn 19798  Abelcabl 19799  TopSpctps 22938  clsccl 23026  TopGrpctgp 24079   tsums ctsu 24134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-topgen 17488  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-fbas 21361  df-fg 21362  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tmd 24080  df-tgp 24081  df-tsms 24135
This theorem is referenced by:  tgptsmscld  24159
  Copyright terms: Public domain W3C validator