MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscls Structured version   Visualization version   GIF version

Theorem tgptsmscls 24044
Description: A sum in a topological group is uniquely determined up to a coset of cls({0}), which is a normal subgroup by clsnsg 24004, 0nsg 19108. (Contributed by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
tgptsmscls.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tgptsmscls (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋}))

Proof of Theorem tgptsmscls
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . . . . . 10 (𝜑𝐺 ∈ TopGrp)
21adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
3 tgpgrp 23972 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Grp)
5 eqid 2730 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
650subg 19090 . . . . . . . . . 10 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
74, 6syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
8 tgptsmscls.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
98clssubg 24003 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ {(0g𝐺)} ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺))
102, 7, 9syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺))
11 tgptsmscls.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
12 eqid 2730 . . . . . . . . 9 (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))
1311, 12eqger 19117 . . . . . . . 8 (((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺) → (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) Er 𝐵)
1410, 13syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) Er 𝐵)
15 tgptsmscls.1 . . . . . . . . . 10 (𝜑𝐺 ∈ CMnd)
16 tgptps 23974 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopSp)
18 tgptsmscls.a . . . . . . . . . 10 (𝜑𝐴𝑉)
19 tgptsmscls.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
2011, 15, 17, 18, 19tsmscl 24029 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2120sselda 3949 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥𝐵)
22 tgptsmscls.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
2320, 22sseldd 3950 . . . . . . . . 9 (𝜑𝑋𝐵)
2423adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋𝐵)
25 eqid 2730 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
2615adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
2718adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
2819adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
2922adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹))
30 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
3111, 25, 26, 2, 27, 28, 28, 29, 30tsmssub 24043 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑋(-g𝐺)𝑥) ∈ (𝐺 tsums (𝐹f (-g𝐺)𝐹)))
3228ffvelcdmda 7059 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3328feqmptd 6932 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3427, 32, 32, 33, 33offval2 7676 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐹f (-g𝐺)𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)(-g𝐺)(𝐹𝑘))))
354adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → 𝐺 ∈ Grp)
3611, 5, 25grpsubid 18963 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘)(-g𝐺)(𝐹𝑘)) = (0g𝐺))
3735, 32, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → ((𝐹𝑘)(-g𝐺)(𝐹𝑘)) = (0g𝐺))
3837mpteq2dva 5203 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ ((𝐹𝑘)(-g𝐺)(𝐹𝑘))) = (𝑘𝐴 ↦ (0g𝐺)))
3934, 38eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐹f (-g𝐺)𝐹) = (𝑘𝐴 ↦ (0g𝐺)))
4039oveq2d 7406 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝐹f (-g𝐺)𝐹)) = (𝐺 tsums (𝑘𝐴 ↦ (0g𝐺))))
412, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopSp)
4211, 5grpidcl 18904 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
434, 42syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (0g𝐺) ∈ 𝐵)
4443adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑘𝐴) → (0g𝐺) ∈ 𝐵)
4544fmpttd 7090 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ (0g𝐺)):𝐴𝐵)
46 fconstmpt 5703 . . . . . . . . . . . 12 (𝐴 × {(0g𝐺)}) = (𝑘𝐴 ↦ (0g𝐺))
47 fvexd 6876 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ V)
4818, 47fczfsuppd 9344 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(0g𝐺)}) finSupp (0g𝐺))
4948adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐴 × {(0g𝐺)}) finSupp (0g𝐺))
5046, 49eqbrtrrid 5146 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑘𝐴 ↦ (0g𝐺)) finSupp (0g𝐺))
5111, 5, 26, 41, 27, 45, 50, 8tsmsgsum 24033 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝑘𝐴 ↦ (0g𝐺))) = ((cls‘𝐽)‘{(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))}))
52 cmnmnd 19734 . . . . . . . . . . . . . 14 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5326, 52syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Mnd)
545gsumz 18770 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴 ↦ (0g𝐺))) = (0g𝐺))
5553, 27, 54syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 Σg (𝑘𝐴 ↦ (0g𝐺))) = (0g𝐺))
5655sneqd 4604 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))} = {(0g𝐺)})
5756fveq2d 6865 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(𝐺 Σg (𝑘𝐴 ↦ (0g𝐺)))}) = ((cls‘𝐽)‘{(0g𝐺)}))
5840, 51, 573eqtrd 2769 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums (𝐹f (-g𝐺)𝐹)) = ((cls‘𝐽)‘{(0g𝐺)}))
5931, 58eleqtrd 2831 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))
60 isabl 19721 . . . . . . . . . 10 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
614, 26, 60sylanbrc 583 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ Abel)
6211subgss 19066 . . . . . . . . . 10 (((cls‘𝐽)‘{(0g𝐺)}) ∈ (SubGrp‘𝐺) → ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵)
6310, 62syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵)
6411, 25, 12eqgabl 19771 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ ((cls‘𝐽)‘{(0g𝐺)}) ⊆ 𝐵) → (𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋 ↔ (𝑥𝐵𝑋𝐵 ∧ (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))))
6561, 63, 64syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋 ↔ (𝑥𝐵𝑋𝐵 ∧ (𝑋(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘{(0g𝐺)}))))
6621, 24, 59, 65mpbir3and 1343 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑋)
6714, 66ersym 8686 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥)
6812releqg 19114 . . . . . . 7 Rel (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))
69 relelec 8721 . . . . . . 7 (Rel (𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) → (𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) ↔ 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥))
7068, 69ax-mp 5 . . . . . 6 (𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) ↔ 𝑋(𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)}))𝑥)
7167, 70sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})))
72 eqid 2730 . . . . . . 7 ((cls‘𝐽)‘{(0g𝐺)}) = ((cls‘𝐽)‘{(0g𝐺)})
7311, 8, 5, 12, 72snclseqg 24010 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑋𝐵) → [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = ((cls‘𝐽)‘{𝑋}))
742, 24, 73syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → [𝑋](𝐺 ~QG ((cls‘𝐽)‘{(0g𝐺)})) = ((cls‘𝐽)‘{𝑋}))
7571, 74eleqtrd 2831 . . . 4 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘{𝑋}))
7675ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘{𝑋})))
7776ssrdv 3955 . 2 (𝜑 → (𝐺 tsums 𝐹) ⊆ ((cls‘𝐽)‘{𝑋}))
7811, 8, 15, 17, 18, 19, 22tsmscls 24032 . 2 (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹))
7977, 78eqssd 3967 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654   Er wer 8671  [cec 8672   finSupp cfsupp 9319  Basecbs 17186  TopOpenctopn 17391  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Grpcgrp 18872  -gcsg 18874  SubGrpcsubg 19059   ~QG cqg 19061  CMndccmn 19717  Abelcabl 19718  TopSpctps 22826  clsccl 22912  TopGrpctgp 23965   tsums ctsu 24020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-topgen 17413  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021
This theorem is referenced by:  tgptsmscld  24045
  Copyright terms: Public domain W3C validator