Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gicabl Structured version   Visualization version   GIF version

Theorem gicabl 40043
Description: Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.)
Assertion
Ref Expression
gicabl (𝐺𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))

Proof of Theorem gicabl
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 18401 . 2 (𝐺𝑔 𝐻 ↔ (𝐺 GrpIso 𝐻) ≠ ∅)
2 n0 4260 . . 3 ((𝐺 GrpIso 𝐻) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 GrpIso 𝐻))
3 gimghm 18396 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥 ∈ (𝐺 GrpHom 𝐻))
4 ghmgrp1 18352 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐺 ∈ Grp)
6 ghmgrp2 18353 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
73, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐻 ∈ Grp)
85, 72thd 268 . . . . . 6 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Grp ↔ 𝐻 ∈ Grp))
9 grpmnd 18102 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
105, 9syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐺 ∈ Mnd)
11 grpmnd 18102 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
127, 11syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐻 ∈ Mnd)
1310, 122thd 268 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Mnd ↔ 𝐻 ∈ Mnd))
14 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
1614, 15gimf1o 18395 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻))
17 f1of1 6589 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
1816, 17syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
1918adantr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
205adantr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
21 simprl 770 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
22 simprr 772 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
23 eqid 2798 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
2414, 23grpcl 18103 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2520, 21, 22, 24syl3anc 1368 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2614, 23grpcl 18103 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))
2720, 22, 21, 26syl3anc 1368 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))
28 f1fveq 6998 . . . . . . . . . . . . 13 ((𝑥:(Base‘𝐺)–1-1→(Base‘𝐻) ∧ ((𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
2919, 25, 27, 28syl12anc 835 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
303adantr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (𝐺 GrpHom 𝐻))
31 eqid 2798 . . . . . . . . . . . . . . 15 (+g𝐻) = (+g𝐻)
3214, 23, 31ghmlin 18355 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑥‘(𝑦(+g𝐺)𝑧)) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
3330, 21, 22, 32syl3anc 1368 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥‘(𝑦(+g𝐺)𝑧)) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
3414, 23, 31ghmlin 18355 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥‘(𝑧(+g𝐺)𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
3530, 22, 21, 34syl3anc 1368 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥‘(𝑧(+g𝐺)𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
3633, 35eqeq12d 2814 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
3729, 36bitr3d 284 . . . . . . . . . . 11 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
38372ralbidva 3163 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
39 f1ofo 6597 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥:(Base‘𝐺)–onto→(Base‘𝐻))
40 foima 6570 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–onto→(Base‘𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4216, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4342raleqdv 3364 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
44 f1ofn 6591 . . . . . . . . . . . . . 14 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥 Fn (Base‘𝐺))
4516, 44syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥 Fn (Base‘𝐺))
46 ssid 3937 . . . . . . . . . . . . 13 (Base‘𝐺) ⊆ (Base‘𝐺)
47 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥𝑧) → ((𝑥𝑦)(+g𝐻)𝑣) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
48 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥𝑧) → (𝑣(+g𝐻)(𝑥𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
4947, 48eqeq12d 2814 . . . . . . . . . . . . . 14 (𝑣 = (𝑥𝑧) → (((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5049ralima 6978 . . . . . . . . . . . . 13 ((𝑥 Fn (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (Base‘𝐺)) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5145, 46, 50sylancl 589 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5243, 51bitr3d 284 . . . . . . . . . . 11 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5352ralbidv 3162 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5438, 53bitr4d 285 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
5542raleqdv 3364 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
56 oveq1 7142 . . . . . . . . . . . . . 14 (𝑤 = (𝑥𝑦) → (𝑤(+g𝐻)𝑣) = ((𝑥𝑦)(+g𝐻)𝑣))
57 oveq2 7143 . . . . . . . . . . . . . 14 (𝑤 = (𝑥𝑦) → (𝑣(+g𝐻)𝑤) = (𝑣(+g𝐻)(𝑥𝑦)))
5856, 57eqeq12d 2814 . . . . . . . . . . . . 13 (𝑤 = (𝑥𝑦) → ((𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
5958ralbidv 3162 . . . . . . . . . . . 12 (𝑤 = (𝑥𝑦) → (∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6059ralima 6978 . . . . . . . . . . 11 ((𝑥 Fn (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (Base‘𝐺)) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6145, 46, 60sylancl 589 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6255, 61bitr3d 284 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6354, 62bitr4d 285 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
6413, 63anbi12d 633 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → ((𝐺 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)) ↔ (𝐻 ∈ Mnd ∧ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤))))
6514, 23iscmn 18906 . . . . . . 7 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
6615, 31iscmn 18906 . . . . . . 7 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
6764, 65, 663bitr4g 317 . . . . . 6 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd))
688, 67anbi12d 633 . . . . 5 (𝑥 ∈ (𝐺 GrpIso 𝐻) → ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)))
69 isabl 18902 . . . . 5 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
70 isabl 18902 . . . . 5 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd))
7168, 69, 703bitr4g 317 . . . 4 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
7271exlimiv 1931 . . 3 (∃𝑥 𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
732, 72sylbi 220 . 2 ((𝐺 GrpIso 𝐻) ≠ ∅ → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
741, 73sylbi 220 1 (𝐺𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wss 3881  c0 4243   class class class wbr 5030  cima 5522   Fn wfn 6319  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Mndcmnd 17903  Grpcgrp 18095   GrpHom cghm 18347   GrpIso cgim 18389  𝑔 cgic 18390  CMndccmn 18898  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-1o 8085  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ghm 18348  df-gim 18391  df-gic 18392  df-cmn 18900  df-abl 18901
This theorem is referenced by:  isnumbasgrplem1  40045
  Copyright terms: Public domain W3C validator