| Step | Hyp | Ref
| Expression |
| 1 | | tsmsxp.2 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| 2 | | tgpgrp 24086 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | | tsmsxp.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 5 | | isabl 19802 |
. . . 4
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| 6 | 3, 4, 5 | sylanbrc 583 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 7 | | tsmsxp.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 8 | | tsmsxp.z |
. . . 4
⊢ 0 =
(0g‘𝐺) |
| 9 | | tsmsxp.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) |
| 10 | 9 | elin2d 4205 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Fin) |
| 11 | | tsmsxp.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝒫 𝐶 ∩ Fin)) |
| 12 | 11 | elin2d 4205 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 13 | | xpfi 9358 |
. . . . 5
⊢ ((𝐾 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐾 × 𝑁) ∈ Fin) |
| 14 | 10, 12, 13 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐾 × 𝑁) ∈ Fin) |
| 15 | | tsmsxp.f |
. . . . 5
⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| 16 | | elfpw 9394 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾 ⊆ 𝐴 ∧ 𝐾 ∈ Fin)) |
| 17 | 16 | simplbi 497 |
. . . . . . 7
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ⊆ 𝐴) |
| 18 | 9, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐾 ⊆ 𝐴) |
| 19 | | elfpw 9394 |
. . . . . . . 8
⊢ (𝑁 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑁 ⊆ 𝐶 ∧ 𝑁 ∈ Fin)) |
| 20 | 19 | simplbi 497 |
. . . . . . 7
⊢ (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁 ⊆ 𝐶) |
| 21 | 11, 20 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑁 ⊆ 𝐶) |
| 22 | | xpss12 5700 |
. . . . . 6
⊢ ((𝐾 ⊆ 𝐴 ∧ 𝑁 ⊆ 𝐶) → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶)) |
| 23 | 18, 21, 22 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶)) |
| 24 | 15, 23 | fssresd 6775 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)):(𝐾 × 𝑁)⟶𝐵) |
| 25 | | tsmsxp.3 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐿) |
| 26 | 24, 14, 25 | fdmfifsupp 9415 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)) finSupp 0 ) |
| 27 | 7, 8, 4, 14, 24, 26 | gsumcl 19933 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵) |
| 28 | | tsmsxp.h |
. . . . 5
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| 29 | 28, 18 | fssresd 6775 |
. . . 4
⊢ (𝜑 → (𝐻 ↾ 𝐾):𝐾⟶𝐵) |
| 30 | 29, 10, 25 | fdmfifsupp 9415 |
. . . 4
⊢ (𝜑 → (𝐻 ↾ 𝐾) finSupp 0 ) |
| 31 | 7, 8, 4, 9, 29, 30 | gsumcl 19933 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝐵) |
| 32 | | tsmsxp.p |
. . . 4
⊢ + =
(+g‘𝐺) |
| 33 | | tsmsxp.m |
. . . 4
⊢ − =
(-g‘𝐺) |
| 34 | 7, 32, 33 | ablpncan3 19834 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ ((𝐺 Σg
(𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵 ∧ (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝐵)) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻 ↾ 𝐾))) |
| 35 | 6, 27, 31, 34 | syl12anc 837 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻 ↾ 𝐾))) |
| 36 | | tsmsxp.5 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆) |
| 37 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝐺 ∈ CMnd) |
| 38 | | snfi 9083 |
. . . . . . . . 9
⊢ {𝑦} ∈ Fin |
| 39 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑁 ∈ Fin) |
| 40 | | xpfi 9358 |
. . . . . . . . 9
⊢ (({𝑦} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝑦} × 𝑁) ∈ Fin) |
| 41 | 38, 39, 40 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → ({𝑦} × 𝑁) ∈ Fin) |
| 42 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| 43 | 18 | sselda 3983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑦 ∈ 𝐴) |
| 44 | 43 | snssd 4809 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → {𝑦} ⊆ 𝐴) |
| 45 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑁 ⊆ 𝐶) |
| 46 | | xpss12 5700 |
. . . . . . . . . 10
⊢ (({𝑦} ⊆ 𝐴 ∧ 𝑁 ⊆ 𝐶) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶)) |
| 47 | 44, 45, 46 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶)) |
| 48 | 42, 47 | fssresd 6775 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)):({𝑦} × 𝑁)⟶𝐵) |
| 49 | 8 | fvexi 6920 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 0 ∈ V) |
| 51 | 48, 41, 50 | fdmfifsupp 9415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)) finSupp 0 ) |
| 52 | 7, 8, 37, 41, 48, 51 | gsumcl 19933 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ 𝐵) |
| 53 | 52 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))):𝐾⟶𝐵) |
| 54 | | eqid 2737 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) |
| 55 | | ovexd 7466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V) |
| 56 | 54, 10, 55, 25 | fsuppmptdm 9416 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) finSupp 0 ) |
| 57 | 7, 8, 33, 6, 9, 29, 53, 30, 56 | gsumsub 19966 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝐻 ↾ 𝐾) ∘f − (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))) |
| 58 | | fvexd 6921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐻‘𝑦) ∈ V) |
| 59 | 28, 18 | feqresmpt 6978 |
. . . . . . 7
⊢ (𝜑 → (𝐻 ↾ 𝐾) = (𝑦 ∈ 𝐾 ↦ (𝐻‘𝑦))) |
| 60 | | eqidd 2738 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) |
| 61 | 9, 58, 55, 59, 60 | offval2 7717 |
. . . . . 6
⊢ (𝜑 → ((𝐻 ↾ 𝐾) ∘f − (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) |
| 62 | 61 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝐻 ↾ 𝐾) ∘f − (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))) |
| 63 | | cmnmnd 19815 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 64 | 37, 63 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝐺 ∈ Mnd) |
| 65 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑦 ∈ 𝐾) |
| 66 | 42 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| 67 | 43 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → 𝑦 ∈ 𝐴) |
| 68 | 45 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → 𝑧 ∈ 𝐶) |
| 69 | 66, 67, 68 | fovcdmd 7605 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → (𝑦𝐹𝑧) ∈ 𝐵) |
| 70 | 69 | fmpttd 7135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)):𝑁⟶𝐵) |
| 71 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)) = (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)) |
| 72 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → (𝑦𝐹𝑧) ∈ V) |
| 73 | 71, 39, 72, 50 | fsuppmptdm 9416 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)) finSupp 0 ) |
| 74 | 7, 8, 37, 39, 70, 73 | gsumcl 19933 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) |
| 75 | | velsn 4642 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦) |
| 76 | | ovres 7599 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ {𝑦} ∧ 𝑧 ∈ 𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧)) |
| 77 | 75, 76 | sylanbr 582 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = 𝑦 ∧ 𝑧 ∈ 𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧)) |
| 78 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → (𝑤𝐹𝑧) = (𝑦𝐹𝑧)) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = 𝑦 ∧ 𝑧 ∈ 𝑁) → (𝑤𝐹𝑧) = (𝑦𝐹𝑧)) |
| 80 | 77, 79 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = 𝑦 ∧ 𝑧 ∈ 𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑦𝐹𝑧)) |
| 81 | 80 | mpteq2dva 5242 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)) = (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) |
| 82 | 81 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
| 83 | 7, 82 | gsumsn 19972 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐾 ∧ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
| 84 | 64, 65, 74, 83 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
| 85 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → {𝑦} ∈ Fin) |
| 86 | 7, 8, 37, 85, 39, 48, 51 | gsumxp 19994 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)))))) |
| 87 | | ovres 7599 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧)) |
| 88 | 87 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧)) |
| 89 | 88 | mpteq2dva 5242 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)) = (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) |
| 90 | 89 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
| 91 | 84, 86, 90 | 3eqtr4d 2787 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))) |
| 92 | 91 | mpteq2dva 5242 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))) |
| 93 | 92 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))) |
| 94 | 7, 8, 4, 10, 12, 24, 26 | gsumxp 19994 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))) |
| 95 | 93, 94 | eqtr4d 2780 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) |
| 96 | 95 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) |
| 97 | 57, 62, 96 | 3eqtr3d 2785 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) |
| 98 | | oveq2 7439 |
. . . . . 6
⊢ (𝑔 = (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → (𝐺 Σg 𝑔) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))) |
| 99 | 98 | eleq1d 2826 |
. . . . 5
⊢ (𝑔 = (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → ((𝐺 Σg 𝑔) ∈ 𝑇 ↔ (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇)) |
| 100 | | tsmsxp.6 |
. . . . 5
⊢ (𝜑 → ∀𝑔 ∈ (𝐿 ↑m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇) |
| 101 | | tsmsxp.x |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿) |
| 102 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐻‘𝑥) = (𝐻‘𝑦)) |
| 103 | | sneq 4636 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 104 | 103 | xpeq1d 5714 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ({𝑥} × 𝑁) = ({𝑦} × 𝑁)) |
| 105 | 104 | reseq2d 5997 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐹 ↾ ({𝑥} × 𝑁)) = (𝐹 ↾ ({𝑦} × 𝑁))) |
| 106 | 105 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁))) = (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) |
| 107 | 102, 106 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) = ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) |
| 108 | 107 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ↔ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)) |
| 109 | 108 | rspccva 3621 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ∧ 𝑦 ∈ 𝐾) → ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿) |
| 110 | 101, 109 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿) |
| 111 | 110 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾⟶𝐿) |
| 112 | | tsmsxp.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ 𝐽) |
| 113 | 112, 9 | elmapd 8880 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿 ↑m 𝐾) ↔ (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾⟶𝐿)) |
| 114 | 111, 113 | mpbird 257 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿 ↑m 𝐾)) |
| 115 | 99, 100, 114 | rspcdva 3623 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇) |
| 116 | 97, 115 | eqeltrrd 2842 |
. . 3
⊢ (𝜑 → ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) |
| 117 | | tsmsxp.4 |
. . 3
⊢ (𝜑 → ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) |
| 118 | | oveq1 7438 |
. . . . 5
⊢ (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → (𝑐 + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑)) |
| 119 | 118 | eleq1d 2826 |
. . . 4
⊢ (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → ((𝑐 + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈)) |
| 120 | | oveq2 7439 |
. . . . 5
⊢ (𝑑 = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))) |
| 121 | 120 | eleq1d 2826 |
. . . 4
⊢ (𝑑 = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → (((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)) |
| 122 | 119, 121 | rspc2va 3634 |
. . 3
⊢ ((((𝐺 Σg
(𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆 ∧ ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) ∧ ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈) |
| 123 | 36, 116, 117, 122 | syl21anc 838 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈) |
| 124 | 35, 123 | eqeltrrd 2842 |
1
⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝑈) |