Step | Hyp | Ref
| Expression |
1 | | tsmsxp.2 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TopGrp) |
2 | | tgpgrp 22793 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | | tsmsxp.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) |
5 | | isabl 18992 |
. . . 4
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
6 | 3, 4, 5 | sylanbrc 586 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
7 | | tsmsxp.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
8 | | tsmsxp.z |
. . . 4
⊢ 0 =
(0g‘𝐺) |
9 | | tsmsxp.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) |
10 | 9 | elin2d 4107 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Fin) |
11 | | tsmsxp.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝒫 𝐶 ∩ Fin)) |
12 | 11 | elin2d 4107 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ Fin) |
13 | | xpfi 8836 |
. . . . 5
⊢ ((𝐾 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐾 × 𝑁) ∈ Fin) |
14 | 10, 12, 13 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐾 × 𝑁) ∈ Fin) |
15 | | tsmsxp.f |
. . . . 5
⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
16 | | elfpw 8873 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾 ⊆ 𝐴 ∧ 𝐾 ∈ Fin)) |
17 | 16 | simplbi 501 |
. . . . . . 7
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ⊆ 𝐴) |
18 | 9, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐾 ⊆ 𝐴) |
19 | | elfpw 8873 |
. . . . . . . 8
⊢ (𝑁 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑁 ⊆ 𝐶 ∧ 𝑁 ∈ Fin)) |
20 | 19 | simplbi 501 |
. . . . . . 7
⊢ (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁 ⊆ 𝐶) |
21 | 11, 20 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑁 ⊆ 𝐶) |
22 | | xpss12 5544 |
. . . . . 6
⊢ ((𝐾 ⊆ 𝐴 ∧ 𝑁 ⊆ 𝐶) → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶)) |
23 | 18, 21, 22 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶)) |
24 | 15, 23 | fssresd 6536 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)):(𝐾 × 𝑁)⟶𝐵) |
25 | | tsmsxp.3 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐿) |
26 | 24, 14, 25 | fdmfifsupp 8890 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)) finSupp 0 ) |
27 | 7, 8, 4, 14, 24, 26 | gsumcl 19118 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵) |
28 | | tsmsxp.h |
. . . . 5
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
29 | 28, 18 | fssresd 6536 |
. . . 4
⊢ (𝜑 → (𝐻 ↾ 𝐾):𝐾⟶𝐵) |
30 | 29, 10, 25 | fdmfifsupp 8890 |
. . . 4
⊢ (𝜑 → (𝐻 ↾ 𝐾) finSupp 0 ) |
31 | 7, 8, 4, 9, 29, 30 | gsumcl 19118 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝐵) |
32 | | tsmsxp.p |
. . . 4
⊢ + =
(+g‘𝐺) |
33 | | tsmsxp.m |
. . . 4
⊢ − =
(-g‘𝐺) |
34 | 7, 32, 33 | ablpncan3 19020 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ ((𝐺 Σg
(𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵 ∧ (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝐵)) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻 ↾ 𝐾))) |
35 | 6, 27, 31, 34 | syl12anc 835 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻 ↾ 𝐾))) |
36 | | tsmsxp.5 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆) |
37 | 4 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝐺 ∈ CMnd) |
38 | | snfi 8628 |
. . . . . . . . 9
⊢ {𝑦} ∈ Fin |
39 | 12 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑁 ∈ Fin) |
40 | | xpfi 8836 |
. . . . . . . . 9
⊢ (({𝑦} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝑦} × 𝑁) ∈ Fin) |
41 | 38, 39, 40 | sylancr 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → ({𝑦} × 𝑁) ∈ Fin) |
42 | 15 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
43 | 18 | sselda 3895 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑦 ∈ 𝐴) |
44 | 43 | snssd 4703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → {𝑦} ⊆ 𝐴) |
45 | 21 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑁 ⊆ 𝐶) |
46 | | xpss12 5544 |
. . . . . . . . . 10
⊢ (({𝑦} ⊆ 𝐴 ∧ 𝑁 ⊆ 𝐶) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶)) |
47 | 44, 45, 46 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶)) |
48 | 42, 47 | fssresd 6536 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)):({𝑦} × 𝑁)⟶𝐵) |
49 | 8 | fvexi 6678 |
. . . . . . . . . 10
⊢ 0 ∈
V |
50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 0 ∈ V) |
51 | 48, 41, 50 | fdmfifsupp 8890 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)) finSupp 0 ) |
52 | 7, 8, 37, 41, 48, 51 | gsumcl 19118 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ 𝐵) |
53 | 52 | fmpttd 6877 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))):𝐾⟶𝐵) |
54 | | eqid 2759 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) |
55 | | ovexd 7192 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V) |
56 | 54, 10, 55, 25 | fsuppmptdm 8891 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) finSupp 0 ) |
57 | 7, 8, 33, 6, 9, 29, 53, 30, 56 | gsumsub 19151 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝐻 ↾ 𝐾) ∘f − (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))) |
58 | | fvexd 6679 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐻‘𝑦) ∈ V) |
59 | 28, 18 | feqresmpt 6728 |
. . . . . . 7
⊢ (𝜑 → (𝐻 ↾ 𝐾) = (𝑦 ∈ 𝐾 ↦ (𝐻‘𝑦))) |
60 | | eqidd 2760 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) |
61 | 9, 58, 55, 59, 60 | offval2 7431 |
. . . . . 6
⊢ (𝜑 → ((𝐻 ↾ 𝐾) ∘f − (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) |
62 | 61 | oveq2d 7173 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝐻 ↾ 𝐾) ∘f − (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))) |
63 | | cmnmnd 19004 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
64 | 37, 63 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝐺 ∈ Mnd) |
65 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → 𝑦 ∈ 𝐾) |
66 | 42 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
67 | 43 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → 𝑦 ∈ 𝐴) |
68 | 45 | sselda 3895 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → 𝑧 ∈ 𝐶) |
69 | 66, 67, 68 | fovrnd 7323 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → (𝑦𝐹𝑧) ∈ 𝐵) |
70 | 69 | fmpttd 6877 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)):𝑁⟶𝐵) |
71 | | eqid 2759 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)) = (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)) |
72 | | ovexd 7192 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → (𝑦𝐹𝑧) ∈ V) |
73 | 71, 39, 72, 50 | fsuppmptdm 8891 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)) finSupp 0 ) |
74 | 7, 8, 37, 39, 70, 73 | gsumcl 19118 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) |
75 | | velsn 4542 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦) |
76 | | ovres 7317 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ {𝑦} ∧ 𝑧 ∈ 𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧)) |
77 | 75, 76 | sylanbr 585 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = 𝑦 ∧ 𝑧 ∈ 𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧)) |
78 | | oveq1 7164 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → (𝑤𝐹𝑧) = (𝑦𝐹𝑧)) |
79 | 78 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = 𝑦 ∧ 𝑧 ∈ 𝑁) → (𝑤𝐹𝑧) = (𝑦𝐹𝑧)) |
80 | 77, 79 | eqtrd 2794 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = 𝑦 ∧ 𝑧 ∈ 𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑦𝐹𝑧)) |
81 | 80 | mpteq2dva 5132 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)) = (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) |
82 | 81 | oveq2d 7173 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
83 | 7, 82 | gsumsn 19157 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐾 ∧ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
84 | 64, 65, 74, 83 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
85 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → {𝑦} ∈ Fin) |
86 | 7, 8, 37, 85, 39, 48, 51 | gsumxp 19179 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)))))) |
87 | | ovres 7317 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧)) |
88 | 87 | adantll 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐾) ∧ 𝑧 ∈ 𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧)) |
89 | 88 | mpteq2dva 5132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)) = (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧))) |
90 | 89 | oveq2d 7173 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦𝐹𝑧)))) |
91 | 84, 86, 90 | 3eqtr4d 2804 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))) |
92 | 91 | mpteq2dva 5132 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))) |
93 | 92 | oveq2d 7173 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))) |
94 | 7, 8, 4, 10, 12, 24, 26 | gsumxp 19179 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝑧 ∈ 𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))) |
95 | 93, 94 | eqtr4d 2797 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) |
96 | 95 | oveq2d 7173 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝑦 ∈ 𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) |
97 | 57, 62, 96 | 3eqtr3d 2802 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) |
98 | | oveq2 7165 |
. . . . . 6
⊢ (𝑔 = (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → (𝐺 Σg 𝑔) = (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))) |
99 | 98 | eleq1d 2837 |
. . . . 5
⊢ (𝑔 = (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → ((𝐺 Σg 𝑔) ∈ 𝑇 ↔ (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇)) |
100 | | tsmsxp.6 |
. . . . 5
⊢ (𝜑 → ∀𝑔 ∈ (𝐿 ↑m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇) |
101 | | tsmsxp.x |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿) |
102 | | fveq2 6664 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐻‘𝑥) = (𝐻‘𝑦)) |
103 | | sneq 4536 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
104 | 103 | xpeq1d 5558 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ({𝑥} × 𝑁) = ({𝑦} × 𝑁)) |
105 | 104 | reseq2d 5829 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐹 ↾ ({𝑥} × 𝑁)) = (𝐹 ↾ ({𝑦} × 𝑁))) |
106 | 105 | oveq2d 7173 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁))) = (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) |
107 | 102, 106 | oveq12d 7175 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) = ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) |
108 | 107 | eleq1d 2837 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ↔ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)) |
109 | 108 | rspccva 3543 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ∧ 𝑦 ∈ 𝐾) → ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿) |
110 | 101, 109 | sylan 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿) |
111 | 110 | fmpttd 6877 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾⟶𝐿) |
112 | | tsmsxp.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ 𝐽) |
113 | 112, 9 | elmapd 8437 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿 ↑m 𝐾) ↔ (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾⟶𝐿)) |
114 | 111, 113 | mpbird 260 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿 ↑m 𝐾)) |
115 | 99, 100, 114 | rspcdva 3546 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑦 ∈ 𝐾 ↦ ((𝐻‘𝑦) − (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇) |
116 | 97, 115 | eqeltrrd 2854 |
. . 3
⊢ (𝜑 → ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) |
117 | | tsmsxp.4 |
. . 3
⊢ (𝜑 → ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) |
118 | | oveq1 7164 |
. . . . 5
⊢ (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → (𝑐 + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑)) |
119 | 118 | eleq1d 2837 |
. . . 4
⊢ (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → ((𝑐 + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈)) |
120 | | oveq2 7165 |
. . . . 5
⊢ (𝑑 = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))) |
121 | 120 | eleq1d 2837 |
. . . 4
⊢ (𝑑 = ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → (((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)) |
122 | 119, 121 | rspc2va 3555 |
. . 3
⊢ ((((𝐺 Σg
(𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆 ∧ ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) ∧ ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈) |
123 | 36, 116, 117, 122 | syl21anc 836 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻 ↾ 𝐾)) − (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈) |
124 | 35, 123 | eqeltrrd 2854 |
1
⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝑈) |