MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrabl Structured version   Visualization version   GIF version

Theorem cntrabl 18963
Description: The center of a group is an abelian group. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcmnd.z 𝑍 = (𝑀s (Cntr‘𝑀))
Assertion
Ref Expression
cntrabl (𝑀 ∈ Grp → 𝑍 ∈ Abel)

Proof of Theorem cntrabl
StepHypRef Expression
1 eqid 2824 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2824 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
31, 2cntrval 18449 . . . 4 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
4 ssid 3975 . . . . 5 (Base‘𝑀) ⊆ (Base‘𝑀)
51, 2cntzsubg 18467 . . . . 5 ((𝑀 ∈ Grp ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubGrp‘𝑀))
64, 5mpan2 690 . . . 4 (𝑀 ∈ Grp → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubGrp‘𝑀))
73, 6eqeltrrid 2921 . . 3 (𝑀 ∈ Grp → (Cntr‘𝑀) ∈ (SubGrp‘𝑀))
8 cntrcmnd.z . . . 4 𝑍 = (𝑀s (Cntr‘𝑀))
98subggrp 18282 . . 3 ((Cntr‘𝑀) ∈ (SubGrp‘𝑀) → 𝑍 ∈ Grp)
107, 9syl 17 . 2 (𝑀 ∈ Grp → 𝑍 ∈ Grp)
11 grpmnd 18110 . . 3 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
128cntrcmnd 18962 . . 3 (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)
1311, 12syl 17 . 2 (𝑀 ∈ Grp → 𝑍 ∈ CMnd)
14 isabl 18910 . 2 (𝑍 ∈ Abel ↔ (𝑍 ∈ Grp ∧ 𝑍 ∈ CMnd))
1510, 13, 14sylanbrc 586 1 (𝑀 ∈ Grp → 𝑍 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  wss 3919  cfv 6343  (class class class)co 7149  Basecbs 16483  s cress 16484  Mndcmnd 17911  Grpcgrp 18103  SubGrpcsubg 18273  Cntzccntz 18445  Cntrccntr 18446  CMndccmn 18906  Abelcabl 18907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-subg 18276  df-cntz 18447  df-cntr 18448  df-cmn 18908  df-abl 18909
This theorem is referenced by:  simpcntrab  43410
  Copyright terms: Public domain W3C validator