MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsabld Structured version   Visualization version   GIF version

Theorem prdsabld 18911
Description: The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdscmnd.y 𝑌 = (𝑆Xs𝑅)
prdscmnd.i (𝜑𝐼𝑊)
prdscmnd.s (𝜑𝑆𝑉)
prdsgabld.r (𝜑𝑅:𝐼⟶Abel)
Assertion
Ref Expression
prdsabld (𝜑𝑌 ∈ Abel)

Proof of Theorem prdsabld
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdscmnd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdscmnd.i . . 3 (𝜑𝐼𝑊)
3 prdscmnd.s . . 3 (𝜑𝑆𝑉)
4 prdsgabld.r . . . 4 (𝜑𝑅:𝐼⟶Abel)
5 ablgrp 18840 . . . . 5 (𝑎 ∈ Abel → 𝑎 ∈ Grp)
65ssriv 3968 . . . 4 Abel ⊆ Grp
7 fss 6520 . . . 4 ((𝑅:𝐼⟶Abel ∧ Abel ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 18147 . 2 (𝜑𝑌 ∈ Grp)
10 ablcmn 18842 . . . . 5 (𝑎 ∈ Abel → 𝑎 ∈ CMnd)
1110ssriv 3968 . . . 4 Abel ⊆ CMnd
12 fss 6520 . . . 4 ((𝑅:𝐼⟶Abel ∧ Abel ⊆ CMnd) → 𝑅:𝐼⟶CMnd)
134, 11, 12sylancl 586 . . 3 (𝜑𝑅:𝐼⟶CMnd)
141, 2, 3, 13prdscmnd 18910 . 2 (𝜑𝑌 ∈ CMnd)
15 isabl 18839 . 2 (𝑌 ∈ Abel ↔ (𝑌 ∈ Grp ∧ 𝑌 ∈ CMnd))
169, 14, 15sylanbrc 583 1 (𝜑𝑌 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  wss 3933  wf 6344  (class class class)co 7145  Xscprds 16707  Grpcgrp 18041  CMndccmn 18835  Abelcabl 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-0g 16703  df-prds 16709  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-cmn 18837  df-abl 18838
This theorem is referenced by:  pwsabl  18913
  Copyright terms: Public domain W3C validator