![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.) |
Ref | Expression |
---|---|
ablpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
ablpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ablpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
Ref | Expression |
---|---|
ablpropd | ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | ablpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ablpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | 1, 2, 3 | grppropd 18836 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
5 | 1, 2, 3 | cmnpropd 19658 | . . 3 ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
6 | 4, 5 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd))) |
7 | isabl 19651 | . 2 ⊢ (𝐾 ∈ Abel ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd)) | |
8 | isabl 19651 | . 2 ⊢ (𝐿 ∈ Abel ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd)) | |
9 | 6, 7, 8 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Grpcgrp 18818 CMndccmn 19647 Abelcabl 19648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-cmn 19649 df-abl 19650 |
This theorem is referenced by: ablprop 19660 rngpropd 46663 |
Copyright terms: Public domain | W3C validator |