| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| ablpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| ablpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| ablpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| ablpropd | ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | ablpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | ablpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | grppropd 18939 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| 5 | 1, 2, 3 | cmnpropd 19777 | . . 3 ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
| 6 | 4, 5 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd))) |
| 7 | isabl 19770 | . 2 ⊢ (𝐾 ∈ Abel ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd)) | |
| 8 | isabl 19770 | . 2 ⊢ (𝐿 ∈ Abel ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Grpcgrp 18921 CMndccmn 19766 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-cmn 19768 df-abl 19769 |
| This theorem is referenced by: ablprop 19779 rngpropd 20139 |
| Copyright terms: Public domain | W3C validator |