MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpropd Structured version   Visualization version   GIF version

Theorem ablpropd 19689
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
Hypotheses
Ref Expression
ablpropd.1 (𝜑𝐵 = (Base‘𝐾))
ablpropd.2 (𝜑𝐵 = (Base‘𝐿))
ablpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
ablpropd (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ablpropd
StepHypRef Expression
1 ablpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ablpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ablpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 18848 . . 3 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
51, 2, 3cmnpropd 19688 . . 3 (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
64, 5anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd)))
7 isabl 19681 . 2 (𝐾 ∈ Abel ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd))
8 isabl 19681 . 2 (𝐿 ∈ Abel ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd))
96, 7, 83bitr4g 314 1 (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  CMndccmn 19677  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-cmn 19679  df-abl 19680
This theorem is referenced by:  ablprop  19690  rngpropd  20077
  Copyright terms: Public domain W3C validator