Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.) |
Ref | Expression |
---|---|
ablpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
ablpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ablpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
Ref | Expression |
---|---|
ablpropd | ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | ablpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ablpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | 1, 2, 3 | grppropd 18682 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
5 | 1, 2, 3 | cmnpropd 19483 | . . 3 ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
6 | 4, 5 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd))) |
7 | isabl 19477 | . 2 ⊢ (𝐾 ∈ Abel ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd)) | |
8 | isabl 19477 | . 2 ⊢ (𝐿 ∈ Abel ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd)) | |
9 | 6, 7, 8 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 +gcplusg 17051 Grpcgrp 18665 CMndccmn 19473 Abelcabl 19474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-ov 7332 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-grp 18668 df-cmn 19475 df-abl 19476 |
This theorem is referenced by: ablprop 19485 |
Copyright terms: Public domain | W3C validator |