MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsinv Structured version   Visualization version   GIF version

Theorem tsmsinv 24002
Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tsmsinv.b 𝐡 = (Baseβ€˜πΊ)
tsmsinv.p 𝐼 = (invgβ€˜πΊ)
tsmsinv.1 (πœ‘ β†’ 𝐺 ∈ CMnd)
tsmsinv.2 (πœ‘ β†’ 𝐺 ∈ TopGrp)
tsmsinv.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
tsmsinv.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
tsmsinv.x (πœ‘ β†’ 𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsinv (πœ‘ β†’ (πΌβ€˜π‘‹) ∈ (𝐺 tsums (𝐼 ∘ 𝐹)))

Proof of Theorem tsmsinv
StepHypRef Expression
1 tsmsinv.b . 2 𝐡 = (Baseβ€˜πΊ)
2 eqid 2726 . 2 (TopOpenβ€˜πΊ) = (TopOpenβ€˜πΊ)
3 tsmsinv.1 . 2 (πœ‘ β†’ 𝐺 ∈ CMnd)
4 tsmsinv.2 . . 3 (πœ‘ β†’ 𝐺 ∈ TopGrp)
5 tgptps 23934 . . 3 (𝐺 ∈ TopGrp β†’ 𝐺 ∈ TopSp)
64, 5syl 17 . 2 (πœ‘ β†’ 𝐺 ∈ TopSp)
7 tgpgrp 23932 . . . . . 6 (𝐺 ∈ TopGrp β†’ 𝐺 ∈ Grp)
84, 7syl 17 . . . . 5 (πœ‘ β†’ 𝐺 ∈ Grp)
9 isabl 19701 . . . . 5 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
108, 3, 9sylanbrc 582 . . . 4 (πœ‘ β†’ 𝐺 ∈ Abel)
11 tsmsinv.p . . . . 5 𝐼 = (invgβ€˜πΊ)
121, 11invghm 19750 . . . 4 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
1310, 12sylib 217 . . 3 (πœ‘ β†’ 𝐼 ∈ (𝐺 GrpHom 𝐺))
14 ghmmhm 19148 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) β†’ 𝐼 ∈ (𝐺 MndHom 𝐺))
1513, 14syl 17 . 2 (πœ‘ β†’ 𝐼 ∈ (𝐺 MndHom 𝐺))
162, 11tgpinv 23939 . . 3 (𝐺 ∈ TopGrp β†’ 𝐼 ∈ ((TopOpenβ€˜πΊ) Cn (TopOpenβ€˜πΊ)))
174, 16syl 17 . 2 (πœ‘ β†’ 𝐼 ∈ ((TopOpenβ€˜πΊ) Cn (TopOpenβ€˜πΊ)))
18 tsmsinv.a . 2 (πœ‘ β†’ 𝐴 ∈ 𝑉)
19 tsmsinv.f . 2 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
20 tsmsinv.x . 2 (πœ‘ β†’ 𝑋 ∈ (𝐺 tsums 𝐹))
211, 2, 2, 3, 6, 3, 6, 15, 17, 18, 19, 20tsmsmhm 24000 1 (πœ‘ β†’ (πΌβ€˜π‘‹) ∈ (𝐺 tsums (𝐼 ∘ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   ∘ ccom 5673  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  TopOpenctopn 17373   MndHom cmhm 18708  Grpcgrp 18860  invgcminusg 18861   GrpHom cghm 19135  CMndccmn 19697  Abelcabl 19698  TopSpctps 22784   Cn ccn 23078  TopGrpctgp 23925   tsums ctsu 23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-seq 13970  df-hash 14293  df-0g 17393  df-gsum 17394  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-mhm 18710  df-grp 18863  df-minusg 18864  df-ghm 19136  df-cntz 19230  df-cmn 19699  df-abl 19700  df-fbas 21232  df-fg 21233  df-top 22746  df-topon 22763  df-topsp 22785  df-ntr 22874  df-nei 22952  df-cn 23081  df-cnp 23082  df-fil 23700  df-fm 23792  df-flim 23793  df-flf 23794  df-tmd 23926  df-tgp 23927  df-tsms 23981
This theorem is referenced by:  tsmssub  24003
  Copyright terms: Public domain W3C validator