MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsinv Structured version   Visualization version   GIF version

Theorem tsmsinv 23297
Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tsmsinv.b 𝐵 = (Base‘𝐺)
tsmsinv.p 𝐼 = (invg𝐺)
tsmsinv.1 (𝜑𝐺 ∈ CMnd)
tsmsinv.2 (𝜑𝐺 ∈ TopGrp)
tsmsinv.a (𝜑𝐴𝑉)
tsmsinv.f (𝜑𝐹:𝐴𝐵)
tsmsinv.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsinv (𝜑 → (𝐼𝑋) ∈ (𝐺 tsums (𝐼𝐹)))

Proof of Theorem tsmsinv
StepHypRef Expression
1 tsmsinv.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2740 . 2 (TopOpen‘𝐺) = (TopOpen‘𝐺)
3 tsmsinv.1 . 2 (𝜑𝐺 ∈ CMnd)
4 tsmsinv.2 . . 3 (𝜑𝐺 ∈ TopGrp)
5 tgptps 23229 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ TopSp)
7 tgpgrp 23227 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
84, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
9 isabl 19388 . . . . 5 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
108, 3, 9sylanbrc 583 . . . 4 (𝜑𝐺 ∈ Abel)
11 tsmsinv.p . . . . 5 𝐼 = (invg𝐺)
121, 11invghm 19433 . . . 4 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
1310, 12sylib 217 . . 3 (𝜑𝐼 ∈ (𝐺 GrpHom 𝐺))
14 ghmmhm 18842 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐼 ∈ (𝐺 MndHom 𝐺))
1513, 14syl 17 . 2 (𝜑𝐼 ∈ (𝐺 MndHom 𝐺))
162, 11tgpinv 23234 . . 3 (𝐺 ∈ TopGrp → 𝐼 ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
174, 16syl 17 . 2 (𝜑𝐼 ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
18 tsmsinv.a . 2 (𝜑𝐴𝑉)
19 tsmsinv.f . 2 (𝜑𝐹:𝐴𝐵)
20 tsmsinv.x . 2 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
211, 2, 2, 3, 6, 3, 6, 15, 17, 18, 19, 20tsmsmhm 23295 1 (𝜑 → (𝐼𝑋) ∈ (𝐺 tsums (𝐼𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  ccom 5594  wf 6428  cfv 6432  (class class class)co 7271  Basecbs 16910  TopOpenctopn 17130   MndHom cmhm 18426  Grpcgrp 18575  invgcminusg 18576   GrpHom cghm 18829  CMndccmn 19384  Abelcabl 19385  TopSpctps 22079   Cn ccn 22373  TopGrpctgp 23220   tsums ctsu 23275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-0g 17150  df-gsum 17151  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-grp 18578  df-minusg 18579  df-ghm 18830  df-cntz 18921  df-cmn 19386  df-abl 19387  df-fbas 20592  df-fg 20593  df-top 22041  df-topon 22058  df-topsp 22080  df-ntr 22169  df-nei 22247  df-cn 22376  df-cnp 22377  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-tmd 23221  df-tgp 23222  df-tsms 23276
This theorem is referenced by:  tsmssub  23298
  Copyright terms: Public domain W3C validator