Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abliso Structured version   Visualization version   GIF version

Theorem abliso 33031
Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Assertion
Ref Expression
abliso ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)

Proof of Theorem abliso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gimghm 19247 . . . 4 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 ghmgrp2 19202 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
31, 2syl 17 . . 3 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝑁 ∈ Grp)
43adantl 481 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Grp)
54grpmndd 18929 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Mnd)
6 simpll 766 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑀 ∈ Abel)
7 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
8 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
97, 8gimf1o 19246 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
10 f1ocnv 6830 . . . . . . . . . . 11 (𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) → 𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀))
11 f1of 6818 . . . . . . . . . . 11 (𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
129, 10, 113syl 18 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
1312ad2antlr 727 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
14 simprl 770 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑥 ∈ (Base‘𝑁))
1513, 14ffvelcdmd 7075 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑥) ∈ (Base‘𝑀))
16 simprr 772 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑦 ∈ (Base‘𝑁))
1713, 16ffvelcdmd 7075 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑦) ∈ (Base‘𝑀))
18 eqid 2735 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
197, 18ablcom 19780 . . . . . . . 8 ((𝑀 ∈ Abel ∧ (𝐹𝑥) ∈ (Base‘𝑀) ∧ (𝐹𝑦) ∈ (Base‘𝑀)) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
206, 15, 17, 19syl3anc 1373 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
21 gimcnv 19250 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
2221ad2antlr 727 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
23 gimghm 19247 . . . . . . . . 9 (𝐹 ∈ (𝑁 GrpIso 𝑀) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
2422, 23syl 17 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
25 eqid 2735 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
268, 25, 18ghmlin 19204 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
2724, 14, 16, 26syl3anc 1373 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
288, 25, 18ghmlin 19204 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
2924, 16, 14, 28syl3anc 1373 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
3020, 27, 293eqtr4d 2780 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = (𝐹‘(𝑦(+g𝑁)𝑥)))
3130fveq2d 6880 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))))
329ad2antlr 727 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
333ad2antlr 727 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑁 ∈ Grp)
348, 25grpcl 18924 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
3533, 14, 16, 34syl3anc 1373 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
36 f1ocnvfv2 7270 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
3732, 35, 36syl2anc 584 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
388, 25grpcl 18924 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
3933, 16, 14, 38syl3anc 1373 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
40 f1ocnvfv2 7270 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4132, 39, 40syl2anc 584 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4231, 37, 413eqtr3d 2778 . . . 4 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
4342ralrimivva 3187 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
448, 25iscmn 19770 . . 3 (𝑁 ∈ CMnd ↔ (𝑁 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥)))
455, 43, 44sylanbrc 583 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ CMnd)
46 isabl 19765 . 2 (𝑁 ∈ Abel ↔ (𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd))
474, 45, 46sylanbrc 583 1 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  ccnv 5653  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Mndcmnd 18712  Grpcgrp 18916   GrpHom cghm 19195   GrpIso cgim 19240  CMndccmn 19761  Abelcabl 19762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-ghm 19196  df-gim 19242  df-cmn 19763  df-abl 19764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator