Step | Hyp | Ref
| Expression |
1 | | gimghm 18175 |
. . . 4
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
2 | | ghmgrp2 18132 |
. . . 4
⊢ (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝑁 ∈ Grp) |
4 | 3 | adantl 474 |
. 2
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Grp) |
5 | | grpmnd 17898 |
. . . 4
⊢ (𝑁 ∈ Grp → 𝑁 ∈ Mnd) |
6 | 4, 5 | syl 17 |
. . 3
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Mnd) |
7 | | simpll 754 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑀 ∈ Abel) |
8 | | eqid 2778 |
. . . . . . . . . . . 12
⊢
(Base‘𝑀) =
(Base‘𝑀) |
9 | | eqid 2778 |
. . . . . . . . . . . 12
⊢
(Base‘𝑁) =
(Base‘𝑁) |
10 | 8, 9 | gimf1o 18174 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁)) |
11 | | f1ocnv 6456 |
. . . . . . . . . . 11
⊢ (𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) → ◡𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀)) |
12 | | f1of 6444 |
. . . . . . . . . . 11
⊢ (◡𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀) → ◡𝐹:(Base‘𝑁)⟶(Base‘𝑀)) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → ◡𝐹:(Base‘𝑁)⟶(Base‘𝑀)) |
14 | 13 | ad2antlr 714 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ◡𝐹:(Base‘𝑁)⟶(Base‘𝑀)) |
15 | | simprl 758 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑥 ∈ (Base‘𝑁)) |
16 | 14, 15 | ffvelrnd 6677 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘𝑥) ∈ (Base‘𝑀)) |
17 | | simprr 760 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑦 ∈ (Base‘𝑁)) |
18 | 14, 17 | ffvelrnd 6677 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘𝑦) ∈ (Base‘𝑀)) |
19 | | eqid 2778 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
20 | 8, 19 | ablcom 18683 |
. . . . . . . 8
⊢ ((𝑀 ∈ Abel ∧ (◡𝐹‘𝑥) ∈ (Base‘𝑀) ∧ (◡𝐹‘𝑦) ∈ (Base‘𝑀)) → ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
21 | 7, 16, 18, 20 | syl3anc 1351 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
22 | | gimcnv 18178 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → ◡𝐹 ∈ (𝑁 GrpIso 𝑀)) |
23 | 22 | ad2antlr 714 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ◡𝐹 ∈ (𝑁 GrpIso 𝑀)) |
24 | | gimghm 18175 |
. . . . . . . . 9
⊢ (◡𝐹 ∈ (𝑁 GrpIso 𝑀) → ◡𝐹 ∈ (𝑁 GrpHom 𝑀)) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ◡𝐹 ∈ (𝑁 GrpHom 𝑀)) |
26 | | eqid 2778 |
. . . . . . . . 9
⊢
(+g‘𝑁) = (+g‘𝑁) |
27 | 9, 26, 19 | ghmlin 18134 |
. . . . . . . 8
⊢ ((◡𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (◡𝐹‘(𝑥(+g‘𝑁)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦))) |
28 | 25, 15, 17, 27 | syl3anc 1351 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘(𝑥(+g‘𝑁)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦))) |
29 | 9, 26, 19 | ghmlin 18134 |
. . . . . . . 8
⊢ ((◡𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (◡𝐹‘(𝑦(+g‘𝑁)𝑥)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
30 | 25, 17, 15, 29 | syl3anc 1351 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘(𝑦(+g‘𝑁)𝑥)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
31 | 21, 28, 30 | 3eqtr4d 2824 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘(𝑥(+g‘𝑁)𝑦)) = (◡𝐹‘(𝑦(+g‘𝑁)𝑥))) |
32 | 31 | fveq2d 6503 |
. . . . 5
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(◡𝐹‘(𝑥(+g‘𝑁)𝑦))) = (𝐹‘(◡𝐹‘(𝑦(+g‘𝑁)𝑥)))) |
33 | 10 | ad2antlr 714 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁)) |
34 | 3 | ad2antlr 714 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑁 ∈ Grp) |
35 | 9, 26 | grpcl 17899 |
. . . . . . 7
⊢ ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥(+g‘𝑁)𝑦) ∈ (Base‘𝑁)) |
36 | 34, 15, 17, 35 | syl3anc 1351 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g‘𝑁)𝑦) ∈ (Base‘𝑁)) |
37 | | f1ocnvfv2 6859 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑥(+g‘𝑁)𝑦) ∈ (Base‘𝑁)) → (𝐹‘(◡𝐹‘(𝑥(+g‘𝑁)𝑦))) = (𝑥(+g‘𝑁)𝑦)) |
38 | 33, 36, 37 | syl2anc 576 |
. . . . 5
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(◡𝐹‘(𝑥(+g‘𝑁)𝑦))) = (𝑥(+g‘𝑁)𝑦)) |
39 | 9, 26 | grpcl 17899 |
. . . . . . 7
⊢ ((𝑁 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝑦(+g‘𝑁)𝑥) ∈ (Base‘𝑁)) |
40 | 34, 17, 15, 39 | syl3anc 1351 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑦(+g‘𝑁)𝑥) ∈ (Base‘𝑁)) |
41 | | f1ocnvfv2 6859 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑦(+g‘𝑁)𝑥) ∈ (Base‘𝑁)) → (𝐹‘(◡𝐹‘(𝑦(+g‘𝑁)𝑥))) = (𝑦(+g‘𝑁)𝑥)) |
42 | 33, 40, 41 | syl2anc 576 |
. . . . 5
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(◡𝐹‘(𝑦(+g‘𝑁)𝑥))) = (𝑦(+g‘𝑁)𝑥)) |
43 | 32, 38, 42 | 3eqtr3d 2822 |
. . . 4
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g‘𝑁)𝑦) = (𝑦(+g‘𝑁)𝑥)) |
44 | 43 | ralrimivva 3141 |
. . 3
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g‘𝑁)𝑦) = (𝑦(+g‘𝑁)𝑥)) |
45 | 9, 26 | iscmn 18673 |
. . 3
⊢ (𝑁 ∈ CMnd ↔ (𝑁 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g‘𝑁)𝑦) = (𝑦(+g‘𝑁)𝑥))) |
46 | 6, 44, 45 | sylanbrc 575 |
. 2
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ CMnd) |
47 | | isabl 18670 |
. 2
⊢ (𝑁 ∈ Abel ↔ (𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd)) |
48 | 4, 46, 47 | sylanbrc 575 |
1
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel) |