Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abliso Structured version   Visualization version   GIF version

Theorem abliso 32977
Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Assertion
Ref Expression
abliso ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)

Proof of Theorem abliso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gimghm 19196 . . . 4 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 ghmgrp2 19151 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
31, 2syl 17 . . 3 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝑁 ∈ Grp)
43adantl 481 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Grp)
54grpmndd 18878 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Mnd)
6 simpll 766 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑀 ∈ Abel)
7 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
8 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
97, 8gimf1o 19195 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
10 f1ocnv 6812 . . . . . . . . . . 11 (𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) → 𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀))
11 f1of 6800 . . . . . . . . . . 11 (𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
129, 10, 113syl 18 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
1312ad2antlr 727 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
14 simprl 770 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑥 ∈ (Base‘𝑁))
1513, 14ffvelcdmd 7057 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑥) ∈ (Base‘𝑀))
16 simprr 772 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑦 ∈ (Base‘𝑁))
1713, 16ffvelcdmd 7057 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑦) ∈ (Base‘𝑀))
18 eqid 2729 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
197, 18ablcom 19729 . . . . . . . 8 ((𝑀 ∈ Abel ∧ (𝐹𝑥) ∈ (Base‘𝑀) ∧ (𝐹𝑦) ∈ (Base‘𝑀)) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
206, 15, 17, 19syl3anc 1373 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
21 gimcnv 19199 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
2221ad2antlr 727 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
23 gimghm 19196 . . . . . . . . 9 (𝐹 ∈ (𝑁 GrpIso 𝑀) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
2422, 23syl 17 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
25 eqid 2729 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
268, 25, 18ghmlin 19153 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
2724, 14, 16, 26syl3anc 1373 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
288, 25, 18ghmlin 19153 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
2924, 16, 14, 28syl3anc 1373 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
3020, 27, 293eqtr4d 2774 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = (𝐹‘(𝑦(+g𝑁)𝑥)))
3130fveq2d 6862 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))))
329ad2antlr 727 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
333ad2antlr 727 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑁 ∈ Grp)
348, 25grpcl 18873 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
3533, 14, 16, 34syl3anc 1373 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
36 f1ocnvfv2 7252 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
3732, 35, 36syl2anc 584 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
388, 25grpcl 18873 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
3933, 16, 14, 38syl3anc 1373 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
40 f1ocnvfv2 7252 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4132, 39, 40syl2anc 584 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4231, 37, 413eqtr3d 2772 . . . 4 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
4342ralrimivva 3180 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
448, 25iscmn 19719 . . 3 (𝑁 ∈ CMnd ↔ (𝑁 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥)))
455, 43, 44sylanbrc 583 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ CMnd)
46 isabl 19714 . 2 (𝑁 ∈ Abel ↔ (𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd))
474, 45, 46sylanbrc 583 1 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ccnv 5637  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Mndcmnd 18661  Grpcgrp 18865   GrpHom cghm 19144   GrpIso cgim 19189  CMndccmn 19710  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-ghm 19145  df-gim 19191  df-cmn 19712  df-abl 19713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator