| Step | Hyp | Ref
| Expression |
| 1 | | gimghm 19282 |
. . . 4
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
| 2 | | ghmgrp2 19237 |
. . . 4
⊢ (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝑁 ∈ Grp) |
| 4 | 3 | adantl 481 |
. 2
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Grp) |
| 5 | 4 | grpmndd 18964 |
. . 3
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Mnd) |
| 6 | | simpll 767 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑀 ∈ Abel) |
| 7 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 8 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑁) =
(Base‘𝑁) |
| 9 | 7, 8 | gimf1o 19281 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁)) |
| 10 | | f1ocnv 6860 |
. . . . . . . . . . 11
⊢ (𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) → ◡𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀)) |
| 11 | | f1of 6848 |
. . . . . . . . . . 11
⊢ (◡𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀) → ◡𝐹:(Base‘𝑁)⟶(Base‘𝑀)) |
| 12 | 9, 10, 11 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → ◡𝐹:(Base‘𝑁)⟶(Base‘𝑀)) |
| 13 | 12 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ◡𝐹:(Base‘𝑁)⟶(Base‘𝑀)) |
| 14 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑥 ∈ (Base‘𝑁)) |
| 15 | 13, 14 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘𝑥) ∈ (Base‘𝑀)) |
| 16 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑦 ∈ (Base‘𝑁)) |
| 17 | 13, 16 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘𝑦) ∈ (Base‘𝑀)) |
| 18 | | eqid 2737 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 19 | 7, 18 | ablcom 19817 |
. . . . . . . 8
⊢ ((𝑀 ∈ Abel ∧ (◡𝐹‘𝑥) ∈ (Base‘𝑀) ∧ (◡𝐹‘𝑦) ∈ (Base‘𝑀)) → ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
| 20 | 6, 15, 17, 19 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
| 21 | | gimcnv 19285 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑀 GrpIso 𝑁) → ◡𝐹 ∈ (𝑁 GrpIso 𝑀)) |
| 22 | 21 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ◡𝐹 ∈ (𝑁 GrpIso 𝑀)) |
| 23 | | gimghm 19282 |
. . . . . . . . 9
⊢ (◡𝐹 ∈ (𝑁 GrpIso 𝑀) → ◡𝐹 ∈ (𝑁 GrpHom 𝑀)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ◡𝐹 ∈ (𝑁 GrpHom 𝑀)) |
| 25 | | eqid 2737 |
. . . . . . . . 9
⊢
(+g‘𝑁) = (+g‘𝑁) |
| 26 | 8, 25, 18 | ghmlin 19239 |
. . . . . . . 8
⊢ ((◡𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (◡𝐹‘(𝑥(+g‘𝑁)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦))) |
| 27 | 24, 14, 16, 26 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘(𝑥(+g‘𝑁)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑀)(◡𝐹‘𝑦))) |
| 28 | 8, 25, 18 | ghmlin 19239 |
. . . . . . . 8
⊢ ((◡𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (◡𝐹‘(𝑦(+g‘𝑁)𝑥)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
| 29 | 24, 16, 14, 28 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘(𝑦(+g‘𝑁)𝑥)) = ((◡𝐹‘𝑦)(+g‘𝑀)(◡𝐹‘𝑥))) |
| 30 | 20, 27, 29 | 3eqtr4d 2787 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (◡𝐹‘(𝑥(+g‘𝑁)𝑦)) = (◡𝐹‘(𝑦(+g‘𝑁)𝑥))) |
| 31 | 30 | fveq2d 6910 |
. . . . 5
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(◡𝐹‘(𝑥(+g‘𝑁)𝑦))) = (𝐹‘(◡𝐹‘(𝑦(+g‘𝑁)𝑥)))) |
| 32 | 9 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁)) |
| 33 | 3 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑁 ∈ Grp) |
| 34 | 8, 25 | grpcl 18959 |
. . . . . . 7
⊢ ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥(+g‘𝑁)𝑦) ∈ (Base‘𝑁)) |
| 35 | 33, 14, 16, 34 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g‘𝑁)𝑦) ∈ (Base‘𝑁)) |
| 36 | | f1ocnvfv2 7297 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑥(+g‘𝑁)𝑦) ∈ (Base‘𝑁)) → (𝐹‘(◡𝐹‘(𝑥(+g‘𝑁)𝑦))) = (𝑥(+g‘𝑁)𝑦)) |
| 37 | 32, 35, 36 | syl2anc 584 |
. . . . 5
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(◡𝐹‘(𝑥(+g‘𝑁)𝑦))) = (𝑥(+g‘𝑁)𝑦)) |
| 38 | 8, 25 | grpcl 18959 |
. . . . . . 7
⊢ ((𝑁 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝑦(+g‘𝑁)𝑥) ∈ (Base‘𝑁)) |
| 39 | 33, 16, 14, 38 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑦(+g‘𝑁)𝑥) ∈ (Base‘𝑁)) |
| 40 | | f1ocnvfv2 7297 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑦(+g‘𝑁)𝑥) ∈ (Base‘𝑁)) → (𝐹‘(◡𝐹‘(𝑦(+g‘𝑁)𝑥))) = (𝑦(+g‘𝑁)𝑥)) |
| 41 | 32, 39, 40 | syl2anc 584 |
. . . . 5
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(◡𝐹‘(𝑦(+g‘𝑁)𝑥))) = (𝑦(+g‘𝑁)𝑥)) |
| 42 | 31, 37, 41 | 3eqtr3d 2785 |
. . . 4
⊢ (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g‘𝑁)𝑦) = (𝑦(+g‘𝑁)𝑥)) |
| 43 | 42 | ralrimivva 3202 |
. . 3
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g‘𝑁)𝑦) = (𝑦(+g‘𝑁)𝑥)) |
| 44 | 8, 25 | iscmn 19807 |
. . 3
⊢ (𝑁 ∈ CMnd ↔ (𝑁 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g‘𝑁)𝑦) = (𝑦(+g‘𝑁)𝑥))) |
| 45 | 5, 43, 44 | sylanbrc 583 |
. 2
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ CMnd) |
| 46 | | isabl 19802 |
. 2
⊢ (𝑁 ∈ Abel ↔ (𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd)) |
| 47 | 4, 45, 46 | sylanbrc 583 |
1
⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel) |