Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abliso Structured version   Visualization version   GIF version

Theorem abliso 32697
Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Assertion
Ref Expression
abliso ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)

Proof of Theorem abliso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gimghm 19186 . . . 4 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 ghmgrp2 19141 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
31, 2syl 17 . . 3 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝑁 ∈ Grp)
43adantl 481 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Grp)
54grpmndd 18873 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Mnd)
6 simpll 764 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑀 ∈ Abel)
7 eqid 2726 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
8 eqid 2726 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
97, 8gimf1o 19185 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
10 f1ocnv 6838 . . . . . . . . . . 11 (𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) → 𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀))
11 f1of 6826 . . . . . . . . . . 11 (𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
129, 10, 113syl 18 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
1312ad2antlr 724 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
14 simprl 768 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑥 ∈ (Base‘𝑁))
1513, 14ffvelcdmd 7080 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑥) ∈ (Base‘𝑀))
16 simprr 770 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑦 ∈ (Base‘𝑁))
1713, 16ffvelcdmd 7080 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑦) ∈ (Base‘𝑀))
18 eqid 2726 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
197, 18ablcom 19716 . . . . . . . 8 ((𝑀 ∈ Abel ∧ (𝐹𝑥) ∈ (Base‘𝑀) ∧ (𝐹𝑦) ∈ (Base‘𝑀)) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
206, 15, 17, 19syl3anc 1368 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
21 gimcnv 19189 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
2221ad2antlr 724 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
23 gimghm 19186 . . . . . . . . 9 (𝐹 ∈ (𝑁 GrpIso 𝑀) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
2422, 23syl 17 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
25 eqid 2726 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
268, 25, 18ghmlin 19143 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
2724, 14, 16, 26syl3anc 1368 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
288, 25, 18ghmlin 19143 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
2924, 16, 14, 28syl3anc 1368 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
3020, 27, 293eqtr4d 2776 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = (𝐹‘(𝑦(+g𝑁)𝑥)))
3130fveq2d 6888 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))))
329ad2antlr 724 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
333ad2antlr 724 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑁 ∈ Grp)
348, 25grpcl 18868 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
3533, 14, 16, 34syl3anc 1368 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
36 f1ocnvfv2 7270 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
3732, 35, 36syl2anc 583 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
388, 25grpcl 18868 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
3933, 16, 14, 38syl3anc 1368 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
40 f1ocnvfv2 7270 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4132, 39, 40syl2anc 583 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4231, 37, 413eqtr3d 2774 . . . 4 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
4342ralrimivva 3194 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
448, 25iscmn 19706 . . 3 (𝑁 ∈ CMnd ↔ (𝑁 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥)))
455, 43, 44sylanbrc 582 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ CMnd)
46 isabl 19701 . 2 (𝑁 ∈ Abel ↔ (𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd))
474, 45, 46sylanbrc 582 1 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  ccnv 5668  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7404  Basecbs 17150  +gcplusg 17203  Mndcmnd 18664  Grpcgrp 18860   GrpHom cghm 19135   GrpIso cgim 19179  CMndccmn 19697  Abelcabl 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-grp 18863  df-ghm 19136  df-gim 19181  df-cmn 19699  df-abl 19700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator