Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrpgt2nabl Structured version   Visualization version   GIF version

Theorem pgrpgt2nabl 48354
Description: Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
pgrpgt2nabl ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)

Proof of Theorem pgrpgt2nabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2 pgrple2abl.g . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
3 eqid 2729 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3symgtrf 19399 . . . . . . 7 ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺)
5 hashcl 14321 . . . . . . . . . . 11 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
6 2nn0 12459 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
7 nn0ltp1le 12592 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
86, 7mpan 690 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
9 2p1e3 12323 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
109a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ0 → (2 + 1) = 3)
1110breq1d 5117 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → ((2 + 1) ≤ (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
128, 11bitrd 279 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
1312biimpd 229 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) → 3 ≤ (♯‘𝐴)))
1413adantld 490 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
155, 14syl 17 . . . . . . . . . 10 (𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
16 3re 12266 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1716rexri 11232 . . . . . . . . . . . . . . 15 3 ∈ ℝ*
18 pnfge 13090 . . . . . . . . . . . . . . 15 (3 ∈ ℝ* → 3 ≤ +∞)
1917, 18ax-mp 5 . . . . . . . . . . . . . 14 3 ≤ +∞
20 hashinf 14300 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2119, 20breqtrrid 5145 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 3 ≤ (♯‘𝐴))
2221ex 412 . . . . . . . . . . . 12 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2322adantr 480 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2423com12 32 . . . . . . . . . 10 𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
2515, 24pm2.61i 182 . . . . . . . . 9 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴))
26 eqid 2729 . . . . . . . . . . 11 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2726pmtr3ncom 19405 . . . . . . . . . 10 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
28 rexcom 3266 . . . . . . . . . 10 (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) ↔ ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
2927, 28sylibr 234 . . . . . . . . 9 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
3025, 29syldan 591 . . . . . . . 8 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
31 ssrexv 4016 . . . . . . . . 9 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
3231reximdv 3148 . . . . . . . 8 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
334, 30, 32mpsyl 68 . . . . . . 7 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
34 ssrexv 4016 . . . . . . 7 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
354, 33, 34mpsyl 68 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
36 eqid 2729 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
372, 3, 36symgov 19314 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
3837adantl 481 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
39 pm3.22 459 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
4039adantl 481 . . . . . . . . 9 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
412, 3, 36symgov 19314 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4240, 41syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4338, 42neeq12d 2986 . . . . . . 7 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ (𝑥𝑦) ≠ (𝑦𝑥)))
44432rexbidva 3200 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
4535, 44mpbird 257 . . . . 5 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
46 rexnal 3082 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
47 rexnal 3082 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
48 df-ne 2926 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
4948bicomi 224 . . . . . . . . 9 (¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5049rexbii 3076 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5147, 50bitr3i 277 . . . . . . 7 (¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5251rexbii 3076 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5346, 52bitr3i 277 . . . . 5 (¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5445, 53sylibr 234 . . . 4 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
5554intnand 488 . . 3 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
5655intnand 488 . 2 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
57 df-nel 3030 . . 3 (𝐺 ∉ Abel ↔ ¬ 𝐺 ∈ Abel)
58 isabl 19714 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
593, 36iscmn 19719 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
6059anbi2i 623 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6158, 60bitri 275 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6257, 61xchbinx 334 . 2 (𝐺 ∉ Abel ↔ ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6356, 62sylibr 234 1 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  ran crn 5639  ccom 5642  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  2c2 12241  3c3 12242  0cn0 12442  chash 14295  Basecbs 17179  +gcplusg 17220  Mndcmnd 18661  Grpcgrp 18865  SymGrpcsymg 19299  pmTrspcpmtr 19371  CMndccmn 19710  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300  df-pmtr 19372  df-cmn 19712  df-abl 19713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator