Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrpgt2nabl Structured version   Visualization version   GIF version

Theorem pgrpgt2nabl 48341
Description: Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
pgrpgt2nabl ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)

Proof of Theorem pgrpgt2nabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2 pgrple2abl.g . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
3 eqid 2735 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3symgtrf 19450 . . . . . . 7 ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺)
5 hashcl 14374 . . . . . . . . . . 11 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
6 2nn0 12518 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
7 nn0ltp1le 12651 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
86, 7mpan 690 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
9 2p1e3 12382 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
109a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ0 → (2 + 1) = 3)
1110breq1d 5129 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → ((2 + 1) ≤ (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
128, 11bitrd 279 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
1312biimpd 229 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) → 3 ≤ (♯‘𝐴)))
1413adantld 490 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
155, 14syl 17 . . . . . . . . . 10 (𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
16 3re 12320 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1716rexri 11293 . . . . . . . . . . . . . . 15 3 ∈ ℝ*
18 pnfge 13146 . . . . . . . . . . . . . . 15 (3 ∈ ℝ* → 3 ≤ +∞)
1917, 18ax-mp 5 . . . . . . . . . . . . . 14 3 ≤ +∞
20 hashinf 14353 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2119, 20breqtrrid 5157 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 3 ≤ (♯‘𝐴))
2221ex 412 . . . . . . . . . . . 12 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2322adantr 480 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2423com12 32 . . . . . . . . . 10 𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
2515, 24pm2.61i 182 . . . . . . . . 9 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴))
26 eqid 2735 . . . . . . . . . . 11 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2726pmtr3ncom 19456 . . . . . . . . . 10 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
28 rexcom 3271 . . . . . . . . . 10 (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) ↔ ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
2927, 28sylibr 234 . . . . . . . . 9 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
3025, 29syldan 591 . . . . . . . 8 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
31 ssrexv 4028 . . . . . . . . 9 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
3231reximdv 3155 . . . . . . . 8 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
334, 30, 32mpsyl 68 . . . . . . 7 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
34 ssrexv 4028 . . . . . . 7 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
354, 33, 34mpsyl 68 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
36 eqid 2735 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
372, 3, 36symgov 19365 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
3837adantl 481 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
39 pm3.22 459 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
4039adantl 481 . . . . . . . . 9 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
412, 3, 36symgov 19365 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4240, 41syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4338, 42neeq12d 2993 . . . . . . 7 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ (𝑥𝑦) ≠ (𝑦𝑥)))
44432rexbidva 3204 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
4535, 44mpbird 257 . . . . 5 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
46 rexnal 3089 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
47 rexnal 3089 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
48 df-ne 2933 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
4948bicomi 224 . . . . . . . . 9 (¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5049rexbii 3083 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5147, 50bitr3i 277 . . . . . . 7 (¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5251rexbii 3083 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5346, 52bitr3i 277 . . . . 5 (¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5445, 53sylibr 234 . . . 4 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
5554intnand 488 . . 3 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
5655intnand 488 . 2 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
57 df-nel 3037 . . 3 (𝐺 ∉ Abel ↔ ¬ 𝐺 ∈ Abel)
58 isabl 19765 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
593, 36iscmn 19770 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
6059anbi2i 623 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6158, 60bitri 275 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6257, 61xchbinx 334 . 2 (𝐺 ∉ Abel ↔ ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6356, 62sylibr 234 1 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wnel 3036  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  ran crn 5655  ccom 5658  cfv 6531  (class class class)co 7405  Fincfn 8959  1c1 11130   + caddc 11132  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  2c2 12295  3c3 12296  0cn0 12501  chash 14348  Basecbs 17228  +gcplusg 17271  Mndcmnd 18712  Grpcgrp 18916  SymGrpcsymg 19350  pmTrspcpmtr 19422  CMndccmn 19761  Abelcabl 19762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-efmnd 18847  df-symg 19351  df-pmtr 19423  df-cmn 19763  df-abl 19764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator