Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrpgt2nabl Structured version   Visualization version   GIF version

Theorem pgrpgt2nabl 48091
Description: Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
pgrpgt2nabl ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)

Proof of Theorem pgrpgt2nabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . . 8 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2 pgrple2abl.g . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
3 eqid 2740 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3symgtrf 19511 . . . . . . 7 ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺)
5 hashcl 14405 . . . . . . . . . . 11 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
6 2nn0 12570 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
7 nn0ltp1le 12701 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
86, 7mpan 689 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
9 2p1e3 12435 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
109a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ0 → (2 + 1) = 3)
1110breq1d 5176 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → ((2 + 1) ≤ (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
128, 11bitrd 279 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
1312biimpd 229 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) → 3 ≤ (♯‘𝐴)))
1413adantld 490 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
155, 14syl 17 . . . . . . . . . 10 (𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
16 3re 12373 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1716rexri 11348 . . . . . . . . . . . . . . 15 3 ∈ ℝ*
18 pnfge 13193 . . . . . . . . . . . . . . 15 (3 ∈ ℝ* → 3 ≤ +∞)
1917, 18ax-mp 5 . . . . . . . . . . . . . 14 3 ≤ +∞
20 hashinf 14384 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2119, 20breqtrrid 5204 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 3 ≤ (♯‘𝐴))
2221ex 412 . . . . . . . . . . . 12 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2322adantr 480 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2423com12 32 . . . . . . . . . 10 𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
2515, 24pm2.61i 182 . . . . . . . . 9 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴))
26 eqid 2740 . . . . . . . . . . 11 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2726pmtr3ncom 19517 . . . . . . . . . 10 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
28 rexcom 3296 . . . . . . . . . 10 (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) ↔ ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
2927, 28sylibr 234 . . . . . . . . 9 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
3025, 29syldan 590 . . . . . . . 8 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
31 ssrexv 4078 . . . . . . . . 9 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
3231reximdv 3176 . . . . . . . 8 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
334, 30, 32mpsyl 68 . . . . . . 7 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
34 ssrexv 4078 . . . . . . 7 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
354, 33, 34mpsyl 68 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
36 eqid 2740 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
372, 3, 36symgov 19425 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
3837adantl 481 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
39 pm3.22 459 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
4039adantl 481 . . . . . . . . 9 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
412, 3, 36symgov 19425 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4240, 41syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4338, 42neeq12d 3008 . . . . . . 7 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ (𝑥𝑦) ≠ (𝑦𝑥)))
44432rexbidva 3226 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
4535, 44mpbird 257 . . . . 5 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
46 rexnal 3106 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
47 rexnal 3106 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
48 df-ne 2947 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
4948bicomi 224 . . . . . . . . 9 (¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5049rexbii 3100 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5147, 50bitr3i 277 . . . . . . 7 (¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5251rexbii 3100 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5346, 52bitr3i 277 . . . . 5 (¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5445, 53sylibr 234 . . . 4 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
5554intnand 488 . . 3 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
5655intnand 488 . 2 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
57 df-nel 3053 . . 3 (𝐺 ∉ Abel ↔ ¬ 𝐺 ∈ Abel)
58 isabl 19826 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
593, 36iscmn 19831 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
6059anbi2i 622 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6158, 60bitri 275 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6257, 61xchbinx 334 . 2 (𝐺 ∉ Abel ↔ ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6356, 62sylibr 234 1 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wnel 3052  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  ran crn 5701  ccom 5704  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  2c2 12348  3c3 12349  0cn0 12553  chash 14379  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772  Grpcgrp 18973  SymGrpcsymg 19410  pmTrspcpmtr 19483  CMndccmn 19822  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411  df-pmtr 19484  df-cmn 19824  df-abl 19825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator