Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrpgt2nabl Structured version   Visualization version   GIF version

Theorem pgrpgt2nabl 46995
Description: Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
pgrpgt2nabl ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)

Proof of Theorem pgrpgt2nabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . . . 8 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2 pgrple2abl.g . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
3 eqid 2732 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3symgtrf 19331 . . . . . . 7 ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺)
5 hashcl 14312 . . . . . . . . . . 11 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
6 2nn0 12485 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
7 nn0ltp1le 12616 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
86, 7mpan 688 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
9 2p1e3 12350 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
109a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ0 → (2 + 1) = 3)
1110breq1d 5157 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → ((2 + 1) ≤ (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
128, 11bitrd 278 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
1312biimpd 228 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) → 3 ≤ (♯‘𝐴)))
1413adantld 491 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
155, 14syl 17 . . . . . . . . . 10 (𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
16 3re 12288 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1716rexri 11268 . . . . . . . . . . . . . . 15 3 ∈ ℝ*
18 pnfge 13106 . . . . . . . . . . . . . . 15 (3 ∈ ℝ* → 3 ≤ +∞)
1917, 18ax-mp 5 . . . . . . . . . . . . . 14 3 ≤ +∞
20 hashinf 14291 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2119, 20breqtrrid 5185 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 3 ≤ (♯‘𝐴))
2221ex 413 . . . . . . . . . . . 12 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2322adantr 481 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2423com12 32 . . . . . . . . . 10 𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
2515, 24pm2.61i 182 . . . . . . . . 9 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴))
26 eqid 2732 . . . . . . . . . . 11 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2726pmtr3ncom 19337 . . . . . . . . . 10 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
28 rexcom 3287 . . . . . . . . . 10 (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) ↔ ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
2927, 28sylibr 233 . . . . . . . . 9 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
3025, 29syldan 591 . . . . . . . 8 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
31 ssrexv 4050 . . . . . . . . 9 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
3231reximdv 3170 . . . . . . . 8 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
334, 30, 32mpsyl 68 . . . . . . 7 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
34 ssrexv 4050 . . . . . . 7 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
354, 33, 34mpsyl 68 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
36 eqid 2732 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
372, 3, 36symgov 19245 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
3837adantl 482 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
39 pm3.22 460 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
4039adantl 482 . . . . . . . . 9 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
412, 3, 36symgov 19245 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4240, 41syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4338, 42neeq12d 3002 . . . . . . 7 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ (𝑥𝑦) ≠ (𝑦𝑥)))
44432rexbidva 3217 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
4535, 44mpbird 256 . . . . 5 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
46 rexnal 3100 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
47 rexnal 3100 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
48 df-ne 2941 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
4948bicomi 223 . . . . . . . . 9 (¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5049rexbii 3094 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5147, 50bitr3i 276 . . . . . . 7 (¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5251rexbii 3094 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5346, 52bitr3i 276 . . . . 5 (¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5445, 53sylibr 233 . . . 4 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
5554intnand 489 . . 3 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
5655intnand 489 . 2 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
57 df-nel 3047 . . 3 (𝐺 ∉ Abel ↔ ¬ 𝐺 ∈ Abel)
58 isabl 19646 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
593, 36iscmn 19651 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
6059anbi2i 623 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6158, 60bitri 274 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6257, 61xchbinx 333 . 2 (𝐺 ∉ Abel ↔ ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6356, 62sylibr 233 1 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wnel 3046  wral 3061  wrex 3070  wss 3947   class class class wbr 5147  ran crn 5676  ccom 5679  cfv 6540  (class class class)co 7405  Fincfn 8935  1c1 11107   + caddc 11109  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  2c2 12263  3c3 12264  0cn0 12468  chash 14286  Basecbs 17140  +gcplusg 17193  Mndcmnd 18621  Grpcgrp 18815  SymGrpcsymg 19228  pmTrspcpmtr 19303  CMndccmn 19642  Abelcabl 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-efmnd 18746  df-symg 19229  df-pmtr 19304  df-cmn 19644  df-abl 19645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator