Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrpgt2nabl Structured version   Visualization version   GIF version

Theorem pgrpgt2nabl 47130
Description: Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
pgrpgt2nabl ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)

Proof of Theorem pgrpgt2nabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2 pgrple2abl.g . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
3 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3symgtrf 19378 . . . . . . 7 ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺)
5 hashcl 14320 . . . . . . . . . . 11 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
6 2nn0 12493 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
7 nn0ltp1le 12624 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
86, 7mpan 686 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ (2 + 1) ≤ (♯‘𝐴)))
9 2p1e3 12358 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
109a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ0 → (2 + 1) = 3)
1110breq1d 5157 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → ((2 + 1) ≤ (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
128, 11bitrd 278 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) ↔ 3 ≤ (♯‘𝐴)))
1312biimpd 228 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 → (2 < (♯‘𝐴) → 3 ≤ (♯‘𝐴)))
1413adantld 489 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
155, 14syl 17 . . . . . . . . . 10 (𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
16 3re 12296 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1716rexri 11276 . . . . . . . . . . . . . . 15 3 ∈ ℝ*
18 pnfge 13114 . . . . . . . . . . . . . . 15 (3 ∈ ℝ* → 3 ≤ +∞)
1917, 18ax-mp 5 . . . . . . . . . . . . . 14 3 ≤ +∞
20 hashinf 14299 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2119, 20breqtrrid 5185 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 3 ≤ (♯‘𝐴))
2221ex 411 . . . . . . . . . . . 12 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2322adantr 479 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (¬ 𝐴 ∈ Fin → 3 ≤ (♯‘𝐴)))
2423com12 32 . . . . . . . . . 10 𝐴 ∈ Fin → ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴)))
2515, 24pm2.61i 182 . . . . . . . . 9 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 3 ≤ (♯‘𝐴))
26 eqid 2730 . . . . . . . . . . 11 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2726pmtr3ncom 19384 . . . . . . . . . 10 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
28 rexcom 3285 . . . . . . . . . 10 (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) ↔ ∃𝑦 ∈ ran (pmTrsp‘𝐴)∃𝑥 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
2927, 28sylibr 233 . . . . . . . . 9 ((𝐴𝑉 ∧ 3 ≤ (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
3025, 29syldan 589 . . . . . . . 8 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥))
31 ssrexv 4050 . . . . . . . . 9 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
3231reximdv 3168 . . . . . . . 8 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ ran (pmTrsp‘𝐴)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
334, 30, 32mpsyl 68 . . . . . . 7 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
34 ssrexv 4050 . . . . . . 7 (ran (pmTrsp‘𝐴) ⊆ (Base‘𝐺) → (∃𝑥 ∈ ran (pmTrsp‘𝐴)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
354, 33, 34mpsyl 68 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥))
36 eqid 2730 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
372, 3, 36symgov 19292 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
3837adantl 480 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
39 pm3.22 458 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
4039adantl 480 . . . . . . . . 9 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)))
412, 3, 36symgov 19292 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4240, 41syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑥) = (𝑦𝑥))
4338, 42neeq12d 3000 . . . . . . 7 (((𝐴𝑉 ∧ 2 < (♯‘𝐴)) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ (𝑥𝑦) ≠ (𝑦𝑥)))
44432rexbidva 3215 . . . . . 6 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → (∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥𝑦) ≠ (𝑦𝑥)))
4535, 44mpbird 256 . . . . 5 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
46 rexnal 3098 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
47 rexnal 3098 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
48 df-ne 2939 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥) ↔ ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
4948bicomi 223 . . . . . . . . 9 (¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5049rexbii 3092 . . . . . . . 8 (∃𝑦 ∈ (Base‘𝐺) ¬ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5147, 50bitr3i 276 . . . . . . 7 (¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5251rexbii 3092 . . . . . 6 (∃𝑥 ∈ (Base‘𝐺) ¬ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5346, 52bitr3i 276 . . . . 5 (¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) ≠ (𝑦(+g𝐺)𝑥))
5445, 53sylibr 233 . . . 4 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
5554intnand 487 . . 3 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
5655intnand 487 . 2 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
57 df-nel 3045 . . 3 (𝐺 ∉ Abel ↔ ¬ 𝐺 ∈ Abel)
58 isabl 19693 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
593, 36iscmn 19698 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
6059anbi2i 621 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6158, 60bitri 274 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6257, 61xchbinx 333 . 2 (𝐺 ∉ Abel ↔ ¬ (𝐺 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
6356, 62sylibr 233 1 ((𝐴𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  wnel 3044  wral 3059  wrex 3068  wss 3947   class class class wbr 5147  ran crn 5676  ccom 5679  cfv 6542  (class class class)co 7411  Fincfn 8941  1c1 11113   + caddc 11115  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  2c2 12271  3c3 12272  0cn0 12476  chash 14294  Basecbs 17148  +gcplusg 17201  Mndcmnd 18659  Grpcgrp 18855  SymGrpcsymg 19275  pmTrspcpmtr 19350  CMndccmn 19689  Abelcabl 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-tset 17220  df-efmnd 18786  df-symg 19276  df-pmtr 19351  df-cmn 19691  df-abl 19692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator