MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isausgr Structured version   Visualization version   GIF version

Theorem isausgr 26960
Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
isausgr ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑊(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)

Proof of Theorem isausgr
StepHypRef Expression
1 simpr 488 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑒 = 𝐸)
2 pweq 4516 . . . . 5 (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉)
32adantr 484 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉)
43rabeqdv 3435 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
51, 4sseq12d 3951 . 2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
6 ausgr.1 . 2 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
75, 6brabga 5389 1 ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  {crab 3113  wss 3884  𝒫 cpw 4500   class class class wbr 5033  {copab 5095  cfv 6328  2c2 11684  chash 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096
This theorem is referenced by:  ausgrusgrb  26961  usgrausgri  26962  ausgrumgri  26963  ausgrusgri  26964
  Copyright terms: Public domain W3C validator