![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isausgr | Structured version Visualization version GIF version |
Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.) |
Ref | Expression |
---|---|
ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} |
Ref | Expression |
---|---|
isausgr | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) | |
2 | pweq 4636 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉) |
4 | 3 | rabeqdv 3459 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
5 | 1, 4 | sseq12d 4042 | . 2 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
6 | ausgr.1 | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} | |
7 | 5, 6 | brabga 5553 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 {copab 5228 ‘cfv 6573 2c2 12348 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 |
This theorem is referenced by: ausgrusgrb 29200 usgrausgri 29201 ausgrumgri 29202 ausgrusgri 29203 |
Copyright terms: Public domain | W3C validator |