MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isausgr Structured version   Visualization version   GIF version

Theorem isausgr 29128
Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
isausgr ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑊(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)

Proof of Theorem isausgr
StepHypRef Expression
1 simpr 484 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑒 = 𝐸)
2 pweq 4596 . . . . 5 (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉)
32adantr 480 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉)
43rabeqdv 3436 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
51, 4sseq12d 3999 . 2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
6 ausgr.1 . 2 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
75, 6brabga 5521 1 ((𝑉𝑊𝐸𝑋) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3420  wss 3933  𝒫 cpw 4582   class class class wbr 5125  {copab 5187  cfv 6542  2c2 12304  chash 14352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188
This theorem is referenced by:  ausgrusgrb  29129  usgrausgri  29130  ausgrumgri  29131  ausgrusgri  29132
  Copyright terms: Public domain W3C validator