![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ausgrumgri | Structured version Visualization version GIF version |
Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
ausgr.1 | ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} |
Ref | Expression |
---|---|
ausgrumgri | ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6901 | . . . . 5 ⊢ (Vtx‘𝐻) ∈ V | |
2 | fvex 6901 | . . . . 5 ⊢ (Edg‘𝐻) ∈ V | |
3 | ausgr.1 | . . . . . 6 ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} | |
4 | 3 | isausgr 28413 | . . . . 5 ⊢ (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
5 | 1, 2, 4 | mp2an 690 | . . . 4 ⊢ ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
6 | edgval 28298 | . . . . . . 7 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻)) |
8 | 7 | sseq1d 4012 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
9 | funfn 6575 | . . . . . . . . 9 ⊢ (Fun (iEdg‘𝐻) ↔ (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) | |
10 | 9 | biimpi 215 | . . . . . . . 8 ⊢ (Fun (iEdg‘𝐻) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
11 | 10 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
12 | simp2 1137 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) | |
13 | df-f 6544 | . . . . . . 7 ⊢ ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐻) Fn dom (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) | |
14 | 11, 12, 13 | sylanbrc 583 | . . . . . 6 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
15 | 14 | 3exp 1119 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
16 | 8, 15 | sylbid 239 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
17 | 5, 16 | biimtrid 241 | . . 3 ⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
18 | 17 | 3imp 1111 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
19 | eqid 2732 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
20 | eqid 2732 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘𝐻) | |
21 | 19, 20 | isumgrs 28345 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
22 | 21 | 3ad2ant1 1133 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
23 | 18, 22 | mpbird 256 | 1 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 {copab 5209 dom cdm 5675 ran crn 5676 Fun wfun 6534 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 2c2 12263 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 UMGraphcumgr 28330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28297 df-umgr 28332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |