![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ausgrumgri | Structured version Visualization version GIF version |
Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} |
Ref | Expression |
---|---|
ausgrumgri | ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6459 | . . . . 5 ⊢ (Vtx‘𝐻) ∈ V | |
2 | fvex 6459 | . . . . 5 ⊢ (Edg‘𝐻) ∈ V | |
3 | ausgr.1 | . . . . . 6 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} | |
4 | 3 | isausgr 26513 | . . . . 5 ⊢ (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
5 | 1, 2, 4 | mp2an 682 | . . . 4 ⊢ ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
6 | edgval 26397 | . . . . . . 7 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻)) |
8 | 7 | sseq1d 3851 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
9 | funfn 6165 | . . . . . . . . 9 ⊢ (Fun (iEdg‘𝐻) ↔ (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) | |
10 | 9 | biimpi 208 | . . . . . . . 8 ⊢ (Fun (iEdg‘𝐻) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
11 | 10 | 3ad2ant3 1126 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
12 | simp2 1128 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) | |
13 | df-f 6139 | . . . . . . 7 ⊢ ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐻) Fn dom (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) | |
14 | 11, 12, 13 | sylanbrc 578 | . . . . . 6 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
15 | 14 | 3exp 1109 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
16 | 8, 15 | sylbid 232 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
17 | 5, 16 | syl5bi 234 | . . 3 ⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
18 | 17 | 3imp 1098 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
19 | eqid 2778 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
20 | eqid 2778 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘𝐻) | |
21 | 19, 20 | isumgrs 26444 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
22 | 21 | 3ad2ant1 1124 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
23 | 18, 22 | mpbird 249 | 1 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 ⊆ wss 3792 𝒫 cpw 4379 class class class wbr 4886 {copab 4948 dom cdm 5355 ran crn 5356 Fun wfun 6129 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 2c2 11430 ♯chash 13435 Vtxcvtx 26344 iEdgciedg 26345 Edgcedg 26395 UMGraphcumgr 26429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-hash 13436 df-edg 26396 df-umgr 26431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |