| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ausgrumgri | Structured version Visualization version GIF version | ||
| Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} |
| Ref | Expression |
|---|---|
| ausgrumgri | ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6844 | . . . . 5 ⊢ (Vtx‘𝐻) ∈ V | |
| 2 | fvex 6844 | . . . . 5 ⊢ (Edg‘𝐻) ∈ V | |
| 3 | ausgr.1 | . . . . . 6 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} | |
| 4 | 3 | isausgr 29153 | . . . . 5 ⊢ (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
| 5 | 1, 2, 4 | mp2an 692 | . . . 4 ⊢ ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 6 | edgval 29038 | . . . . . . 7 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻)) |
| 8 | 7 | sseq1d 3963 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
| 9 | funfn 6519 | . . . . . . . . 9 ⊢ (Fun (iEdg‘𝐻) ↔ (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) | |
| 10 | 9 | biimpi 216 | . . . . . . . 8 ⊢ (Fun (iEdg‘𝐻) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
| 11 | 10 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
| 12 | simp2 1137 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) | |
| 13 | df-f 6493 | . . . . . . 7 ⊢ ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐻) Fn dom (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . . . . 6 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 15 | 14 | 3exp 1119 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
| 16 | 8, 15 | sylbid 240 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
| 17 | 5, 16 | biimtrid 242 | . . 3 ⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))) |
| 18 | 17 | 3imp 1110 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 19 | eqid 2733 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 20 | eqid 2733 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘𝐻) | |
| 21 | 19, 20 | isumgrs 29085 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
| 22 | 21 | 3ad2ant1 1133 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
| 23 | 18, 22 | mpbird 257 | 1 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 ⊆ wss 3899 𝒫 cpw 4551 class class class wbr 5095 {copab 5157 dom cdm 5621 ran crn 5622 Fun wfun 6483 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 2c2 12190 ♯chash 14247 Vtxcvtx 28985 iEdgciedg 28986 Edgcedg 29036 UMGraphcumgr 29070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-hash 14248 df-edg 29037 df-umgr 29072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |