MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgrb Structured version   Visualization version   GIF version

Theorem ausgrusgrb 28158
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
ausgrusgrb ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)   𝑌(𝑣,𝑒)

Proof of Theorem ausgrusgrb
StepHypRef Expression
1 ausgr.1 . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
21isausgr 28157 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3 f1oi 6823 . . . . 5 ( I ↾ 𝐸):𝐸1-1-onto𝐸
4 dff1o5 6794 . . . . . 6 (( I ↾ 𝐸):𝐸1-1-onto𝐸 ↔ (( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸))
5 f1ss 6745 . . . . . . . . . 10 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 dmresi 6006 . . . . . . . . . . . 12 dom ( I ↾ 𝐸) = 𝐸
76eqcomi 2742 . . . . . . . . . . 11 𝐸 = dom ( I ↾ 𝐸)
8 f1eq2 6735 . . . . . . . . . . 11 (𝐸 = dom ( I ↾ 𝐸) → (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
97, 8ax-mp 5 . . . . . . . . . 10 (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
105, 9sylib 217 . . . . . . . . 9 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1110ex 414 . . . . . . . 8 (( I ↾ 𝐸):𝐸1-1𝐸 → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1211a1d 25 . . . . . . 7 (( I ↾ 𝐸):𝐸1-1𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
1312adantr 482 . . . . . 6 ((( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸) → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
144, 13sylbi 216 . . . . 5 (( I ↾ 𝐸):𝐸1-1-onto𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
153, 14ax-mp 5 . . . 4 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
16 df-f 6501 . . . . . 6 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (( I ↾ 𝐸) Fn dom ( I ↾ 𝐸) ∧ ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
17 rnresi 6028 . . . . . . . . 9 ran ( I ↾ 𝐸) = 𝐸
1817sseq1i 3973 . . . . . . . 8 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1918biimpi 215 . . . . . . 7 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2019a1d 25 . . . . . 6 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2116, 20simplbiim 506 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
22 f1f 6739 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2321, 22syl11 33 . . . 4 ((𝑉𝑋𝐸𝑌) → (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2415, 23impbid 211 . . 3 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
25 resiexg 7852 . . . . 5 (𝐸𝑌 → ( I ↾ 𝐸) ∈ V)
26 opiedgfv 28000 . . . . 5 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2725, 26sylan2 594 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2827dmeqd 5862 . . . 4 ((𝑉𝑋𝐸𝑌) → dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = dom ( I ↾ 𝐸))
29 opvtxfv 27997 . . . . . . 7 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3025, 29sylan2 594 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3130pweqd 4578 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝒫 𝑉)
3231rabeqdv 3421 . . . 4 ((𝑉𝑋𝐸𝑌) → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3327, 28, 32f1eq123d 6777 . . 3 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3424, 33bitr4d 282 . 2 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
35 opex 5422 . . . . 5 𝑉, ( I ↾ 𝐸)⟩ ∈ V
36 eqid 2733 . . . . . 6 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
37 eqid 2733 . . . . . 6 (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
3836, 37isusgrs 28149 . . . . 5 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
3935, 38ax-mp 5 . . . 4 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2})
4039bicomi 223 . . 3 ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph)
4140a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
422, 34, 413bitrd 305 1 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {crab 3406  Vcvv 3444  wss 3911  𝒫 cpw 4561  cop 4593   class class class wbr 5106  {copab 5168   I cid 5531  dom cdm 5634  ran crn 5635  cres 5636   Fn wfn 6492  wf 6493  1-1wf1 6494  1-1-ontowf1o 6496  cfv 6497  2c2 12213  chash 14236  Vtxcvtx 27989  iEdgciedg 27990  USGraphcusgr 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-hash 14237  df-vtx 27991  df-iedg 27992  df-usgr 28144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator