MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgrb Structured version   Visualization version   GIF version

Theorem ausgrusgrb 29182
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
ausgrusgrb ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)   𝑌(𝑣,𝑒)

Proof of Theorem ausgrusgrb
StepHypRef Expression
1 ausgr.1 . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
21isausgr 29181 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3 f1oi 6886 . . . . 5 ( I ↾ 𝐸):𝐸1-1-onto𝐸
4 dff1o5 6857 . . . . . 6 (( I ↾ 𝐸):𝐸1-1-onto𝐸 ↔ (( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸))
5 f1ss 6809 . . . . . . . . . 10 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 dmresi 6070 . . . . . . . . . . . 12 dom ( I ↾ 𝐸) = 𝐸
76eqcomi 2746 . . . . . . . . . . 11 𝐸 = dom ( I ↾ 𝐸)
8 f1eq2 6800 . . . . . . . . . . 11 (𝐸 = dom ( I ↾ 𝐸) → (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
97, 8ax-mp 5 . . . . . . . . . 10 (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
105, 9sylib 218 . . . . . . . . 9 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1110ex 412 . . . . . . . 8 (( I ↾ 𝐸):𝐸1-1𝐸 → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1211a1d 25 . . . . . . 7 (( I ↾ 𝐸):𝐸1-1𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
1312adantr 480 . . . . . 6 ((( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸) → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
144, 13sylbi 217 . . . . 5 (( I ↾ 𝐸):𝐸1-1-onto𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
153, 14ax-mp 5 . . . 4 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
16 df-f 6565 . . . . . 6 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (( I ↾ 𝐸) Fn dom ( I ↾ 𝐸) ∧ ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
17 rnresi 6093 . . . . . . . . 9 ran ( I ↾ 𝐸) = 𝐸
1817sseq1i 4012 . . . . . . . 8 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1918biimpi 216 . . . . . . 7 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2019a1d 25 . . . . . 6 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2116, 20simplbiim 504 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
22 f1f 6804 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2321, 22syl11 33 . . . 4 ((𝑉𝑋𝐸𝑌) → (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2415, 23impbid 212 . . 3 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
25 resiexg 7934 . . . . 5 (𝐸𝑌 → ( I ↾ 𝐸) ∈ V)
26 opiedgfv 29024 . . . . 5 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2725, 26sylan2 593 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2827dmeqd 5916 . . . 4 ((𝑉𝑋𝐸𝑌) → dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = dom ( I ↾ 𝐸))
29 opvtxfv 29021 . . . . . . 7 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3025, 29sylan2 593 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3130pweqd 4617 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝒫 𝑉)
3231rabeqdv 3452 . . . 4 ((𝑉𝑋𝐸𝑌) → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3327, 28, 32f1eq123d 6840 . . 3 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3424, 33bitr4d 282 . 2 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
35 opex 5469 . . . . 5 𝑉, ( I ↾ 𝐸)⟩ ∈ V
36 eqid 2737 . . . . . 6 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
37 eqid 2737 . . . . . 6 (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
3836, 37isusgrs 29173 . . . . 5 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
3935, 38ax-mp 5 . . . 4 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2})
4039bicomi 224 . . 3 ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph)
4140a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
422, 34, 413bitrd 305 1 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  wss 3951  𝒫 cpw 4600  cop 4632   class class class wbr 5143  {copab 5205   I cid 5577  dom cdm 5685  ran crn 5686  cres 5687   Fn wfn 6556  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  2c2 12321  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  USGraphcusgr 29166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-vtx 29015  df-iedg 29016  df-usgr 29168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator