MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgrb Structured version   Visualization version   GIF version

Theorem ausgrusgrb 29200
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
ausgrusgrb ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)   𝑌(𝑣,𝑒)

Proof of Theorem ausgrusgrb
StepHypRef Expression
1 ausgr.1 . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
21isausgr 29199 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3 f1oi 6900 . . . . 5 ( I ↾ 𝐸):𝐸1-1-onto𝐸
4 dff1o5 6871 . . . . . 6 (( I ↾ 𝐸):𝐸1-1-onto𝐸 ↔ (( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸))
5 f1ss 6822 . . . . . . . . . 10 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 dmresi 6081 . . . . . . . . . . . 12 dom ( I ↾ 𝐸) = 𝐸
76eqcomi 2749 . . . . . . . . . . 11 𝐸 = dom ( I ↾ 𝐸)
8 f1eq2 6813 . . . . . . . . . . 11 (𝐸 = dom ( I ↾ 𝐸) → (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
97, 8ax-mp 5 . . . . . . . . . 10 (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
105, 9sylib 218 . . . . . . . . 9 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1110ex 412 . . . . . . . 8 (( I ↾ 𝐸):𝐸1-1𝐸 → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1211a1d 25 . . . . . . 7 (( I ↾ 𝐸):𝐸1-1𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
1312adantr 480 . . . . . 6 ((( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸) → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
144, 13sylbi 217 . . . . 5 (( I ↾ 𝐸):𝐸1-1-onto𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
153, 14ax-mp 5 . . . 4 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
16 df-f 6577 . . . . . 6 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (( I ↾ 𝐸) Fn dom ( I ↾ 𝐸) ∧ ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
17 rnresi 6104 . . . . . . . . 9 ran ( I ↾ 𝐸) = 𝐸
1817sseq1i 4037 . . . . . . . 8 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1918biimpi 216 . . . . . . 7 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2019a1d 25 . . . . . 6 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2116, 20simplbiim 504 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
22 f1f 6817 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2321, 22syl11 33 . . . 4 ((𝑉𝑋𝐸𝑌) → (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2415, 23impbid 212 . . 3 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
25 resiexg 7952 . . . . 5 (𝐸𝑌 → ( I ↾ 𝐸) ∈ V)
26 opiedgfv 29042 . . . . 5 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2725, 26sylan2 592 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2827dmeqd 5930 . . . 4 ((𝑉𝑋𝐸𝑌) → dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = dom ( I ↾ 𝐸))
29 opvtxfv 29039 . . . . . . 7 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3025, 29sylan2 592 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3130pweqd 4639 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝒫 𝑉)
3231rabeqdv 3459 . . . 4 ((𝑉𝑋𝐸𝑌) → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3327, 28, 32f1eq123d 6854 . . 3 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3424, 33bitr4d 282 . 2 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
35 opex 5484 . . . . 5 𝑉, ( I ↾ 𝐸)⟩ ∈ V
36 eqid 2740 . . . . . 6 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
37 eqid 2740 . . . . . 6 (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
3836, 37isusgrs 29191 . . . . 5 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
3935, 38ax-mp 5 . . . 4 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2})
4039bicomi 224 . . 3 ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph)
4140a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
422, 34, 413bitrd 305 1 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  cop 4654   class class class wbr 5166  {copab 5228   I cid 5592  dom cdm 5700  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  USGraphcusgr 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-vtx 29033  df-iedg 29034  df-usgr 29186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator