MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgrb Structured version   Visualization version   GIF version

Theorem ausgrusgrb 28692
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
ausgrusgrb ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)   𝑌(𝑣,𝑒)

Proof of Theorem ausgrusgrb
StepHypRef Expression
1 ausgr.1 . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
21isausgr 28691 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3 f1oi 6870 . . . . 5 ( I ↾ 𝐸):𝐸1-1-onto𝐸
4 dff1o5 6841 . . . . . 6 (( I ↾ 𝐸):𝐸1-1-onto𝐸 ↔ (( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸))
5 f1ss 6792 . . . . . . . . . 10 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 dmresi 6050 . . . . . . . . . . . 12 dom ( I ↾ 𝐸) = 𝐸
76eqcomi 2739 . . . . . . . . . . 11 𝐸 = dom ( I ↾ 𝐸)
8 f1eq2 6782 . . . . . . . . . . 11 (𝐸 = dom ( I ↾ 𝐸) → (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
97, 8ax-mp 5 . . . . . . . . . 10 (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
105, 9sylib 217 . . . . . . . . 9 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1110ex 411 . . . . . . . 8 (( I ↾ 𝐸):𝐸1-1𝐸 → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1211a1d 25 . . . . . . 7 (( I ↾ 𝐸):𝐸1-1𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
1312adantr 479 . . . . . 6 ((( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸) → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
144, 13sylbi 216 . . . . 5 (( I ↾ 𝐸):𝐸1-1-onto𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
153, 14ax-mp 5 . . . 4 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
16 df-f 6546 . . . . . 6 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (( I ↾ 𝐸) Fn dom ( I ↾ 𝐸) ∧ ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
17 rnresi 6073 . . . . . . . . 9 ran ( I ↾ 𝐸) = 𝐸
1817sseq1i 4009 . . . . . . . 8 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1918biimpi 215 . . . . . . 7 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2019a1d 25 . . . . . 6 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2116, 20simplbiim 503 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
22 f1f 6786 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2321, 22syl11 33 . . . 4 ((𝑉𝑋𝐸𝑌) → (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2415, 23impbid 211 . . 3 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
25 resiexg 7907 . . . . 5 (𝐸𝑌 → ( I ↾ 𝐸) ∈ V)
26 opiedgfv 28534 . . . . 5 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2725, 26sylan2 591 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2827dmeqd 5904 . . . 4 ((𝑉𝑋𝐸𝑌) → dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = dom ( I ↾ 𝐸))
29 opvtxfv 28531 . . . . . . 7 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3025, 29sylan2 591 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3130pweqd 4618 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝒫 𝑉)
3231rabeqdv 3445 . . . 4 ((𝑉𝑋𝐸𝑌) → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3327, 28, 32f1eq123d 6824 . . 3 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3424, 33bitr4d 281 . 2 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
35 opex 5463 . . . . 5 𝑉, ( I ↾ 𝐸)⟩ ∈ V
36 eqid 2730 . . . . . 6 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
37 eqid 2730 . . . . . 6 (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
3836, 37isusgrs 28683 . . . . 5 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
3935, 38ax-mp 5 . . . 4 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2})
4039bicomi 223 . . 3 ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph)
4140a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
422, 34, 413bitrd 304 1 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  {crab 3430  Vcvv 3472  wss 3947  𝒫 cpw 4601  cop 4633   class class class wbr 5147  {copab 5209   I cid 5572  dom cdm 5675  ran crn 5676  cres 5677   Fn wfn 6537  wf 6538  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  2c2 12271  chash 14294  Vtxcvtx 28523  iEdgciedg 28524  USGraphcusgr 28676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-vtx 28525  df-iedg 28526  df-usgr 28678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator