MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgrb Structured version   Visualization version   GIF version

Theorem ausgrusgrb 27438
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
Hypothesis
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
Assertion
Ref Expression
ausgrusgrb ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐸   𝑒,𝑉,𝑣,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒)   𝑋(𝑣,𝑒)   𝑌(𝑣,𝑒)

Proof of Theorem ausgrusgrb
StepHypRef Expression
1 ausgr.1 . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
21isausgr 27437 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3 f1oi 6737 . . . . 5 ( I ↾ 𝐸):𝐸1-1-onto𝐸
4 dff1o5 6709 . . . . . 6 (( I ↾ 𝐸):𝐸1-1-onto𝐸 ↔ (( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸))
5 f1ss 6660 . . . . . . . . . 10 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 dmresi 5950 . . . . . . . . . . . 12 dom ( I ↾ 𝐸) = 𝐸
76eqcomi 2747 . . . . . . . . . . 11 𝐸 = dom ( I ↾ 𝐸)
8 f1eq2 6650 . . . . . . . . . . 11 (𝐸 = dom ( I ↾ 𝐸) → (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
97, 8ax-mp 5 . . . . . . . . . 10 (( I ↾ 𝐸):𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
105, 9sylib 217 . . . . . . . . 9 ((( I ↾ 𝐸):𝐸1-1𝐸𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1110ex 412 . . . . . . . 8 (( I ↾ 𝐸):𝐸1-1𝐸 → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1211a1d 25 . . . . . . 7 (( I ↾ 𝐸):𝐸1-1𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
1312adantr 480 . . . . . 6 ((( I ↾ 𝐸):𝐸1-1𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸) → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
144, 13sylbi 216 . . . . 5 (( I ↾ 𝐸):𝐸1-1-onto𝐸 → ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})))
153, 14ax-mp 5 . . . 4 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
16 df-f 6422 . . . . . 6 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (( I ↾ 𝐸) Fn dom ( I ↾ 𝐸) ∧ ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
17 rnresi 5972 . . . . . . . . 9 ran ( I ↾ 𝐸) = 𝐸
1817sseq1i 3945 . . . . . . . 8 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1918biimpi 215 . . . . . . 7 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2019a1d 25 . . . . . 6 (ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2116, 20simplbiim 504 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ((𝑉𝑋𝐸𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
22 f1f 6654 . . . . 5 (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → ( I ↾ 𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2321, 22syl11 33 . . . 4 ((𝑉𝑋𝐸𝑌) → (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2415, 23impbid 211 . . 3 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
25 resiexg 7735 . . . . 5 (𝐸𝑌 → ( I ↾ 𝐸) ∈ V)
26 opiedgfv 27280 . . . . 5 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2725, 26sylan2 592 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2827dmeqd 5803 . . . 4 ((𝑉𝑋𝐸𝑌) → dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = dom ( I ↾ 𝐸))
29 opvtxfv 27277 . . . . . . 7 ((𝑉𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3025, 29sylan2 592 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
3130pweqd 4549 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝒫 𝑉)
3231rabeqdv 3409 . . . 4 ((𝑉𝑋𝐸𝑌) → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3327, 28, 32f1eq123d 6692 . . 3 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
3424, 33bitr4d 281 . 2 ((𝑉𝑋𝐸𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
35 opex 5373 . . . . 5 𝑉, ( I ↾ 𝐸)⟩ ∈ V
36 eqid 2738 . . . . . 6 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
37 eqid 2738 . . . . . 6 (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
3836, 37isusgrs 27429 . . . . 5 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2}))
3935, 38ax-mp 5 . . . 4 (⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2})
4039bicomi 223 . . 3 ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph)
4140a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) ∣ (♯‘𝑥) = 2} ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
422, 34, 413bitrd 304 1 ((𝑉𝑋𝐸𝑌) → (𝑉𝐺𝐸 ↔ ⟨𝑉, ( I ↾ 𝐸)⟩ ∈ USGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  cop 4564   class class class wbr 5070  {copab 5132   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-vtx 27271  df-iedg 27272  df-usgr 27424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator