| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscbn | Structured version Visualization version GIF version | ||
| Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25295 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| iscbn | ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = (IndMet‘𝑈)) | |
| 2 | iscbn.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 3 | 1, 2 | eqtr4di 2789 | . . 3 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = 𝐷) |
| 4 | fveq2 6881 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
| 5 | iscbn.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | 4, 5 | eqtr4di 2789 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
| 7 | 6 | fveq2d 6885 | . . 3 ⊢ (𝑢 = 𝑈 → (CMet‘(BaseSet‘𝑢)) = (CMet‘𝑋)) |
| 8 | 3, 7 | eleq12d 2829 | . 2 ⊢ (𝑢 = 𝑈 → ((IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢)) ↔ 𝐷 ∈ (CMet‘𝑋))) |
| 9 | df-cbn 30849 | . 2 ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | |
| 10 | 8, 9 | elrab2 3679 | 1 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 CMetccmet 25211 NrmCVeccnv 30570 BaseSetcba 30572 IndMetcims 30577 CBanccbn 30848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-cbn 30849 |
| This theorem is referenced by: cbncms 30851 bnnv 30852 bnsscmcl 30854 cnbn 30855 hhhl 31190 hhssbnOLD 31265 |
| Copyright terms: Public domain | W3C validator |