![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscbn | Structured version Visualization version GIF version |
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 24837 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
iscbn | ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . 4 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = (IndMet‘𝑈)) | |
2 | iscbn.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = 𝐷) |
4 | fveq2 6888 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
5 | iscbn.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | 4, 5 | eqtr4di 2791 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
7 | 6 | fveq2d 6892 | . . 3 ⊢ (𝑢 = 𝑈 → (CMet‘(BaseSet‘𝑢)) = (CMet‘𝑋)) |
8 | 3, 7 | eleq12d 2828 | . 2 ⊢ (𝑢 = 𝑈 → ((IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢)) ↔ 𝐷 ∈ (CMet‘𝑋))) |
9 | df-cbn 30094 | . 2 ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | |
10 | 8, 9 | elrab2 3685 | 1 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 CMetccmet 24753 NrmCVeccnv 29815 BaseSetcba 29817 IndMetcims 29822 CBanccbn 30093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-cbn 30094 |
This theorem is referenced by: cbncms 30096 bnnv 30097 bnsscmcl 30099 cnbn 30100 hhhl 30435 hhssbnOLD 30510 |
Copyright terms: Public domain | W3C validator |