![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscbn | Structured version Visualization version GIF version |
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25391 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
iscbn | ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = (IndMet‘𝑈)) | |
2 | iscbn.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = 𝐷) |
4 | fveq2 6920 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
5 | iscbn.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | 4, 5 | eqtr4di 2798 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
7 | 6 | fveq2d 6924 | . . 3 ⊢ (𝑢 = 𝑈 → (CMet‘(BaseSet‘𝑢)) = (CMet‘𝑋)) |
8 | 3, 7 | eleq12d 2838 | . 2 ⊢ (𝑢 = 𝑈 → ((IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢)) ↔ 𝐷 ∈ (CMet‘𝑋))) |
9 | df-cbn 30895 | . 2 ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | |
10 | 8, 9 | elrab2 3711 | 1 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 CMetccmet 25307 NrmCVeccnv 30616 BaseSetcba 30618 IndMetcims 30623 CBanccbn 30894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-cbn 30895 |
This theorem is referenced by: cbncms 30897 bnnv 30898 bnsscmcl 30900 cnbn 30901 hhhl 31236 hhssbnOLD 31311 |
Copyright terms: Public domain | W3C validator |