MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscbn Structured version   Visualization version   GIF version

Theorem iscbn 30865
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25285 instead. (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSet‘𝑈)
iscbn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
iscbn (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))

Proof of Theorem iscbn
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6831 . . . 4 (𝑢 = 𝑈 → (IndMet‘𝑢) = (IndMet‘𝑈))
2 iscbn.8 . . . 4 𝐷 = (IndMet‘𝑈)
31, 2eqtr4di 2786 . . 3 (𝑢 = 𝑈 → (IndMet‘𝑢) = 𝐷)
4 fveq2 6831 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
5 iscbn.x . . . . 5 𝑋 = (BaseSet‘𝑈)
64, 5eqtr4di 2786 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
76fveq2d 6835 . . 3 (𝑢 = 𝑈 → (CMet‘(BaseSet‘𝑢)) = (CMet‘𝑋))
83, 7eleq12d 2827 . 2 (𝑢 = 𝑈 → ((IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢)) ↔ 𝐷 ∈ (CMet‘𝑋)))
9 df-cbn 30864 . 2 CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
108, 9elrab2 3646 1 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6489  CMetccmet 25201  NrmCVeccnv 30585  BaseSetcba 30587  IndMetcims 30592  CBanccbn 30863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-cbn 30864
This theorem is referenced by:  cbncms  30866  bnnv  30867  bnsscmcl  30869  cnbn  30870  hhhl  31205  hhssbnOLD  31280
  Copyright terms: Public domain W3C validator