MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscbn Structured version   Visualization version   GIF version

Theorem iscbn 30836
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25260 instead. (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSet‘𝑈)
iscbn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
iscbn (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))

Proof of Theorem iscbn
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . 4 (𝑢 = 𝑈 → (IndMet‘𝑢) = (IndMet‘𝑈))
2 iscbn.8 . . . 4 𝐷 = (IndMet‘𝑈)
31, 2eqtr4di 2784 . . 3 (𝑢 = 𝑈 → (IndMet‘𝑢) = 𝐷)
4 fveq2 6817 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
5 iscbn.x . . . . 5 𝑋 = (BaseSet‘𝑈)
64, 5eqtr4di 2784 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
76fveq2d 6821 . . 3 (𝑢 = 𝑈 → (CMet‘(BaseSet‘𝑢)) = (CMet‘𝑋))
83, 7eleq12d 2825 . 2 (𝑢 = 𝑈 → ((IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢)) ↔ 𝐷 ∈ (CMet‘𝑋)))
9 df-cbn 30835 . 2 CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
108, 9elrab2 3645 1 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6476  CMetccmet 25176  NrmCVeccnv 30556  BaseSetcba 30558  IndMetcims 30563  CBanccbn 30834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-cbn 30835
This theorem is referenced by:  cbncms  30837  bnnv  30838  bnsscmcl  30840  cnbn  30841  hhhl  31176  hhssbnOLD  31251
  Copyright terms: Public domain W3C validator