![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscbn | Structured version Visualization version GIF version |
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25386 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
iscbn | ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = (IndMet‘𝑈)) | |
2 | iscbn.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
3 | 1, 2 | eqtr4di 2793 | . . 3 ⊢ (𝑢 = 𝑈 → (IndMet‘𝑢) = 𝐷) |
4 | fveq2 6907 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
5 | iscbn.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | 4, 5 | eqtr4di 2793 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
7 | 6 | fveq2d 6911 | . . 3 ⊢ (𝑢 = 𝑈 → (CMet‘(BaseSet‘𝑢)) = (CMet‘𝑋)) |
8 | 3, 7 | eleq12d 2833 | . 2 ⊢ (𝑢 = 𝑈 → ((IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢)) ↔ 𝐷 ∈ (CMet‘𝑋))) |
9 | df-cbn 30892 | . 2 ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | |
10 | 8, 9 | elrab2 3698 | 1 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 CMetccmet 25302 NrmCVeccnv 30613 BaseSetcba 30615 IndMetcims 30620 CBanccbn 30891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-cbn 30892 |
This theorem is referenced by: cbncms 30894 bnnv 30895 bnsscmcl 30897 cnbn 30898 hhhl 31233 hhssbnOLD 31308 |
Copyright terms: Public domain | W3C validator |