![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnsscmcl | Structured version Visualization version GIF version |
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnsscmcl.x | β’ π = (BaseSetβπ) |
bnsscmcl.d | β’ π· = (IndMetβπ) |
bnsscmcl.j | β’ π½ = (MetOpenβπ·) |
bnsscmcl.h | β’ π» = (SubSpβπ) |
bnsscmcl.y | β’ π = (BaseSetβπ) |
Ref | Expression |
---|---|
bnsscmcl | β’ ((π β CBan β§ π β π») β (π β CBan β π β (Clsdβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnnv 30387 | . . . 4 β’ (π β CBan β π β NrmCVec) | |
2 | bnsscmcl.h | . . . . 5 β’ π» = (SubSpβπ) | |
3 | 2 | sspnv 30247 | . . . 4 β’ ((π β NrmCVec β§ π β π») β π β NrmCVec) |
4 | 1, 3 | sylan 579 | . . 3 β’ ((π β CBan β§ π β π») β π β NrmCVec) |
5 | bnsscmcl.y | . . . . 5 β’ π = (BaseSetβπ) | |
6 | eqid 2731 | . . . . 5 β’ (IndMetβπ) = (IndMetβπ) | |
7 | 5, 6 | iscbn 30385 | . . . 4 β’ (π β CBan β (π β NrmCVec β§ (IndMetβπ) β (CMetβπ))) |
8 | 7 | baib 535 | . . 3 β’ (π β NrmCVec β (π β CBan β (IndMetβπ) β (CMetβπ))) |
9 | 4, 8 | syl 17 | . 2 β’ ((π β CBan β§ π β π») β (π β CBan β (IndMetβπ) β (CMetβπ))) |
10 | bnsscmcl.d | . . . . 5 β’ π· = (IndMetβπ) | |
11 | 5, 10, 6, 2 | sspims 30260 | . . . 4 β’ ((π β NrmCVec β§ π β π») β (IndMetβπ) = (π· βΎ (π Γ π))) |
12 | 1, 11 | sylan 579 | . . 3 β’ ((π β CBan β§ π β π») β (IndMetβπ) = (π· βΎ (π Γ π))) |
13 | 12 | eleq1d 2817 | . 2 β’ ((π β CBan β§ π β π») β ((IndMetβπ) β (CMetβπ) β (π· βΎ (π Γ π)) β (CMetβπ))) |
14 | bnsscmcl.x | . . . . 5 β’ π = (BaseSetβπ) | |
15 | 14, 10 | cbncms 30386 | . . . 4 β’ (π β CBan β π· β (CMetβπ)) |
16 | 15 | adantr 480 | . . 3 β’ ((π β CBan β§ π β π») β π· β (CMetβπ)) |
17 | bnsscmcl.j | . . . 4 β’ π½ = (MetOpenβπ·) | |
18 | 17 | cmetss 25065 | . . 3 β’ (π· β (CMetβπ) β ((π· βΎ (π Γ π)) β (CMetβπ) β π β (Clsdβπ½))) |
19 | 16, 18 | syl 17 | . 2 β’ ((π β CBan β§ π β π») β ((π· βΎ (π Γ π)) β (CMetβπ) β π β (Clsdβπ½))) |
20 | 9, 13, 19 | 3bitrd 305 | 1 β’ ((π β CBan β§ π β π») β (π β CBan β π β (Clsdβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 Γ cxp 5674 βΎ cres 5678 βcfv 6543 MetOpencmopn 21135 Clsdccld 22741 CMetccmet 25003 NrmCVeccnv 30105 BaseSetcba 30107 IndMetcims 30112 SubSpcss 30242 CBanccbn 30383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ico 13335 df-icc 13336 df-rest 17373 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-top 22617 df-topon 22634 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-haus 23040 df-fil 23571 df-flim 23664 df-cfil 25004 df-cmet 25006 df-grpo 30014 df-gid 30015 df-ginv 30016 df-gdiv 30017 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-vs 30120 df-nmcv 30121 df-ims 30122 df-ssp 30243 df-cbn 30384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |