Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bnsscmcl | Structured version Visualization version GIF version |
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnsscmcl.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
bnsscmcl.d | ⊢ 𝐷 = (IndMet‘𝑈) |
bnsscmcl.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
bnsscmcl.h | ⊢ 𝐻 = (SubSp‘𝑈) |
bnsscmcl.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
Ref | Expression |
---|---|
bnsscmcl | ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnnv 29429 | . . . 4 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
2 | bnsscmcl.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
3 | 2 | sspnv 29289 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
4 | 1, 3 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
5 | bnsscmcl.y | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
6 | eqid 2736 | . . . . 5 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
7 | 5, 6 | iscbn 29427 | . . . 4 ⊢ (𝑊 ∈ CBan ↔ (𝑊 ∈ NrmCVec ∧ (IndMet‘𝑊) ∈ (CMet‘𝑌))) |
8 | 7 | baib 536 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌))) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌))) |
10 | bnsscmcl.d | . . . . 5 ⊢ 𝐷 = (IndMet‘𝑈) | |
11 | 5, 10, 6, 2 | sspims 29302 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
12 | 1, 11 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
13 | 12 | eleq1d 2821 | . 2 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → ((IndMet‘𝑊) ∈ (CMet‘𝑌) ↔ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))) |
14 | bnsscmcl.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
15 | 14, 10 | cbncms 29428 | . . . 4 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ (CMet‘𝑋)) |
17 | bnsscmcl.j | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
18 | 17 | cmetss 24578 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽))) |
19 | 16, 18 | syl 17 | . 2 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽))) |
20 | 9, 13, 19 | 3bitrd 304 | 1 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 × cxp 5612 ↾ cres 5616 ‘cfv 6473 MetOpencmopn 20685 Clsdccld 22265 CMetccmet 24516 NrmCVeccnv 29147 BaseSetcba 29149 IndMetcims 29154 SubSpcss 29284 CBanccbn 29425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fi 9260 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-n0 12327 df-z 12413 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-ico 13178 df-icc 13179 df-rest 17222 df-topgen 17243 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-fbas 20692 df-fg 20693 df-top 22141 df-topon 22158 df-bases 22194 df-cld 22268 df-ntr 22269 df-cls 22270 df-nei 22347 df-haus 22564 df-fil 23095 df-flim 23188 df-cfil 24517 df-cmet 24519 df-grpo 29056 df-gid 29057 df-ginv 29058 df-gdiv 29059 df-ablo 29108 df-vc 29122 df-nv 29155 df-va 29158 df-ba 29159 df-sm 29160 df-0v 29161 df-vs 29162 df-nmcv 29163 df-ims 29164 df-ssp 29285 df-cbn 29426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |