MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnsscmcl Structured version   Visualization version   GIF version

Theorem bnsscmcl 29230
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnsscmcl.x 𝑋 = (BaseSet‘𝑈)
bnsscmcl.d 𝐷 = (IndMet‘𝑈)
bnsscmcl.j 𝐽 = (MetOpen‘𝐷)
bnsscmcl.h 𝐻 = (SubSp‘𝑈)
bnsscmcl.y 𝑌 = (BaseSet‘𝑊)
Assertion
Ref Expression
bnsscmcl ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem bnsscmcl
StepHypRef Expression
1 bnnv 29228 . . . 4 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
2 bnsscmcl.h . . . . 5 𝐻 = (SubSp‘𝑈)
32sspnv 29088 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
41, 3sylan 580 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
5 bnsscmcl.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 eqid 2738 . . . . 5 (IndMet‘𝑊) = (IndMet‘𝑊)
75, 6iscbn 29226 . . . 4 (𝑊 ∈ CBan ↔ (𝑊 ∈ NrmCVec ∧ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
87baib 536 . . 3 (𝑊 ∈ NrmCVec → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
94, 8syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
10 bnsscmcl.d . . . . 5 𝐷 = (IndMet‘𝑈)
115, 10, 6, 2sspims 29101 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
121, 11sylan 580 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
1312eleq1d 2823 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((IndMet‘𝑊) ∈ (CMet‘𝑌) ↔ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)))
14 bnsscmcl.x . . . . 5 𝑋 = (BaseSet‘𝑈)
1514, 10cbncms 29227 . . . 4 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
1615adantr 481 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝐷 ∈ (CMet‘𝑋))
17 bnsscmcl.j . . . 4 𝐽 = (MetOpen‘𝐷)
1817cmetss 24480 . . 3 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
1916, 18syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
209, 13, 193bitrd 305 1 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   × cxp 5587  cres 5591  cfv 6433  MetOpencmopn 20587  Clsdccld 22167  CMetccmet 24418  NrmCVeccnv 28946  BaseSetcba 28948  IndMetcims 28953  SubSpcss 29083  CBanccbn 29224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-haus 22466  df-fil 22997  df-flim 23090  df-cfil 24419  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-ssp 29084  df-cbn 29225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator