MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnsscmcl Structured version   Visualization version   GIF version

Theorem bnsscmcl 30854
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnsscmcl.x 𝑋 = (BaseSet‘𝑈)
bnsscmcl.d 𝐷 = (IndMet‘𝑈)
bnsscmcl.j 𝐽 = (MetOpen‘𝐷)
bnsscmcl.h 𝐻 = (SubSp‘𝑈)
bnsscmcl.y 𝑌 = (BaseSet‘𝑊)
Assertion
Ref Expression
bnsscmcl ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem bnsscmcl
StepHypRef Expression
1 bnnv 30852 . . . 4 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
2 bnsscmcl.h . . . . 5 𝐻 = (SubSp‘𝑈)
32sspnv 30712 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
41, 3sylan 580 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
5 bnsscmcl.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 eqid 2736 . . . . 5 (IndMet‘𝑊) = (IndMet‘𝑊)
75, 6iscbn 30850 . . . 4 (𝑊 ∈ CBan ↔ (𝑊 ∈ NrmCVec ∧ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
87baib 535 . . 3 (𝑊 ∈ NrmCVec → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
94, 8syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
10 bnsscmcl.d . . . . 5 𝐷 = (IndMet‘𝑈)
115, 10, 6, 2sspims 30725 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
121, 11sylan 580 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
1312eleq1d 2820 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((IndMet‘𝑊) ∈ (CMet‘𝑌) ↔ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)))
14 bnsscmcl.x . . . . 5 𝑋 = (BaseSet‘𝑈)
1514, 10cbncms 30851 . . . 4 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
1615adantr 480 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝐷 ∈ (CMet‘𝑋))
17 bnsscmcl.j . . . 4 𝐽 = (MetOpen‘𝐷)
1817cmetss 25273 . . 3 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
1916, 18syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
209, 13, 193bitrd 305 1 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   × cxp 5657  cres 5661  cfv 6536  MetOpencmopn 21310  Clsdccld 22959  CMetccmet 25211  NrmCVeccnv 30570  BaseSetcba 30572  IndMetcims 30577  SubSpcss 30707  CBanccbn 30848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-icc 13374  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-haus 23258  df-fil 23789  df-flim 23882  df-cfil 25212  df-cmet 25214  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-ssp 30708  df-cbn 30849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator