MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnsscmcl Structured version   Visualization version   GIF version

Theorem bnsscmcl 30816
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnsscmcl.x 𝑋 = (BaseSet‘𝑈)
bnsscmcl.d 𝐷 = (IndMet‘𝑈)
bnsscmcl.j 𝐽 = (MetOpen‘𝐷)
bnsscmcl.h 𝐻 = (SubSp‘𝑈)
bnsscmcl.y 𝑌 = (BaseSet‘𝑊)
Assertion
Ref Expression
bnsscmcl ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem bnsscmcl
StepHypRef Expression
1 bnnv 30814 . . . 4 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
2 bnsscmcl.h . . . . 5 𝐻 = (SubSp‘𝑈)
32sspnv 30674 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
41, 3sylan 580 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
5 bnsscmcl.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 eqid 2729 . . . . 5 (IndMet‘𝑊) = (IndMet‘𝑊)
75, 6iscbn 30812 . . . 4 (𝑊 ∈ CBan ↔ (𝑊 ∈ NrmCVec ∧ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
87baib 535 . . 3 (𝑊 ∈ NrmCVec → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
94, 8syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
10 bnsscmcl.d . . . . 5 𝐷 = (IndMet‘𝑈)
115, 10, 6, 2sspims 30687 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
121, 11sylan 580 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
1312eleq1d 2813 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((IndMet‘𝑊) ∈ (CMet‘𝑌) ↔ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)))
14 bnsscmcl.x . . . . 5 𝑋 = (BaseSet‘𝑈)
1514, 10cbncms 30813 . . . 4 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
1615adantr 480 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝐷 ∈ (CMet‘𝑋))
17 bnsscmcl.j . . . 4 𝐽 = (MetOpen‘𝐷)
1817cmetss 25214 . . 3 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
1916, 18syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
209, 13, 193bitrd 305 1 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   × cxp 5617  cres 5621  cfv 6482  MetOpencmopn 21251  Clsdccld 22901  CMetccmet 25152  NrmCVeccnv 30532  BaseSetcba 30534  IndMetcims 30539  SubSpcss 30669  CBanccbn 30810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-haus 23200  df-fil 23731  df-flim 23824  df-cfil 25153  df-cmet 25155  df-grpo 30441  df-gid 30442  df-ginv 30443  df-gdiv 30444  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-vs 30547  df-nmcv 30548  df-ims 30549  df-ssp 30670  df-cbn 30811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator