| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnsscmcl | Structured version Visualization version GIF version | ||
| Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnsscmcl.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| bnsscmcl.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| bnsscmcl.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| bnsscmcl.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| bnsscmcl.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| Ref | Expression |
|---|---|
| bnsscmcl | ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnnv 30795 | . . . 4 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
| 2 | bnsscmcl.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 3 | 2 | sspnv 30655 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| 4 | 1, 3 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| 5 | bnsscmcl.y | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
| 7 | 5, 6 | iscbn 30793 | . . . 4 ⊢ (𝑊 ∈ CBan ↔ (𝑊 ∈ NrmCVec ∧ (IndMet‘𝑊) ∈ (CMet‘𝑌))) |
| 8 | 7 | baib 535 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌))) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌))) |
| 10 | bnsscmcl.d | . . . . 5 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 11 | 5, 10, 6, 2 | sspims 30668 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
| 12 | 1, 11 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
| 13 | 12 | eleq1d 2813 | . 2 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → ((IndMet‘𝑊) ∈ (CMet‘𝑌) ↔ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))) |
| 14 | bnsscmcl.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 15 | 14, 10 | cbncms 30794 | . . . 4 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ (CMet‘𝑋)) |
| 17 | bnsscmcl.j | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 18 | 17 | cmetss 25216 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽))) |
| 19 | 16, 18 | syl 17 | . 2 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽))) |
| 20 | 9, 13, 19 | 3bitrd 305 | 1 ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5636 ↾ cres 5640 ‘cfv 6511 MetOpencmopn 21254 Clsdccld 22903 CMetccmet 25154 NrmCVeccnv 30513 BaseSetcba 30515 IndMetcims 30520 SubSpcss 30650 CBanccbn 30791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-haus 23202 df-fil 23733 df-flim 23826 df-cfil 25155 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-ssp 30651 df-cbn 30792 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |