![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnnv | Structured version Visualization version GIF version |
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25312 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bnnv | ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | eqid 2725 | . . 3 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
3 | 1, 2 | iscbn 30746 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈)))) |
4 | 3 | simplbi 496 | 1 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ‘cfv 6549 CMetccmet 25226 NrmCVeccnv 30466 BaseSetcba 30468 IndMetcims 30473 CBanccbn 30744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-cbn 30745 |
This theorem is referenced by: bnrel 30749 bnsscmcl 30750 ubthlem1 30752 ubthlem2 30753 ubthlem3 30754 minvecolem1 30756 hlnv 30773 |
Copyright terms: Public domain | W3C validator |