| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnnv | Structured version Visualization version GIF version | ||
| Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25273 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnnv | ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 3 | 1, 2 | iscbn 30843 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈)))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 CMetccmet 25187 NrmCVeccnv 30563 BaseSetcba 30565 IndMetcims 30570 CBanccbn 30841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-cbn 30842 |
| This theorem is referenced by: bnrel 30846 bnsscmcl 30847 ubthlem1 30849 ubthlem2 30850 ubthlem3 30851 minvecolem1 30853 hlnv 30870 |
| Copyright terms: Public domain | W3C validator |