MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Structured version   Visualization version   GIF version

Theorem bnnv 30885
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25374 instead. (New usage is discouraged.)
Assertion
Ref Expression
bnnv (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2737 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2737 . . 3 (IndMet‘𝑈) = (IndMet‘𝑈)
31, 2iscbn 30883 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈))))
43simplbi 497 1 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6561  CMetccmet 25288  NrmCVeccnv 30603  BaseSetcba 30605  IndMetcims 30610  CBanccbn 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-cbn 30882
This theorem is referenced by:  bnrel  30886  bnsscmcl  30887  ubthlem1  30889  ubthlem2  30890  ubthlem3  30891  minvecolem1  30893  hlnv  30910
  Copyright terms: Public domain W3C validator