MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Structured version   Visualization version   GIF version

Theorem bnnv 29129
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 24409 instead. (New usage is discouraged.)
Assertion
Ref Expression
bnnv (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2738 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2738 . . 3 (IndMet‘𝑈) = (IndMet‘𝑈)
31, 2iscbn 29127 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈))))
43simplbi 497 1 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  CMetccmet 24323  NrmCVeccnv 28847  BaseSetcba 28849  IndMetcims 28854  CBanccbn 29125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-cbn 29126
This theorem is referenced by:  bnrel  29130  bnsscmcl  29131  ubthlem1  29133  ubthlem2  29134  ubthlem3  29135  minvecolem1  29137  hlnv  29154
  Copyright terms: Public domain W3C validator