| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnnv | Structured version Visualization version GIF version | ||
| Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25273 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnnv | ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 2 | eqid 2731 | . . 3 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 3 | 1, 2 | iscbn 30851 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈)))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6487 CMetccmet 25187 NrmCVeccnv 30571 BaseSetcba 30573 IndMetcims 30578 CBanccbn 30849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6443 df-fv 6495 df-cbn 30850 |
| This theorem is referenced by: bnrel 30854 bnsscmcl 30855 ubthlem1 30857 ubthlem2 30858 ubthlem3 30859 minvecolem1 30861 hlnv 30878 |
| Copyright terms: Public domain | W3C validator |