MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Structured version   Visualization version   GIF version

Theorem bnnv 30845
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25273 instead. (New usage is discouraged.)
Assertion
Ref Expression
bnnv (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2729 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2729 . . 3 (IndMet‘𝑈) = (IndMet‘𝑈)
31, 2iscbn 30843 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈))))
43simplbi 497 1 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6499  CMetccmet 25187  NrmCVeccnv 30563  BaseSetcba 30565  IndMetcims 30570  CBanccbn 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-cbn 30842
This theorem is referenced by:  bnrel  30846  bnsscmcl  30847  ubthlem1  30849  ubthlem2  30850  ubthlem3  30851  minvecolem1  30853  hlnv  30870
  Copyright terms: Public domain W3C validator