Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bnnv | Structured version Visualization version GIF version |
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 24409 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bnnv | ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | eqid 2738 | . . 3 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
3 | 1, 2 | iscbn 29127 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈)))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 CMetccmet 24323 NrmCVeccnv 28847 BaseSetcba 28849 IndMetcims 28854 CBanccbn 29125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-cbn 29126 |
This theorem is referenced by: bnrel 29130 bnsscmcl 29131 ubthlem1 29133 ubthlem2 29134 ubthlem3 29135 minvecolem1 29137 hlnv 29154 |
Copyright terms: Public domain | W3C validator |