MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Structured version   Visualization version   GIF version

Theorem bnnv 30401
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25101 instead. (New usage is discouraged.)
Assertion
Ref Expression
bnnv (π‘ˆ ∈ CBan β†’ π‘ˆ ∈ NrmCVec)

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2731 . . 3 (BaseSetβ€˜π‘ˆ) = (BaseSetβ€˜π‘ˆ)
2 eqid 2731 . . 3 (IndMetβ€˜π‘ˆ) = (IndMetβ€˜π‘ˆ)
31, 2iscbn 30399 . 2 (π‘ˆ ∈ CBan ↔ (π‘ˆ ∈ NrmCVec ∧ (IndMetβ€˜π‘ˆ) ∈ (CMetβ€˜(BaseSetβ€˜π‘ˆ))))
43simplbi 497 1 (π‘ˆ ∈ CBan β†’ π‘ˆ ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2105  β€˜cfv 6543  CMetccmet 25015  NrmCVeccnv 30119  BaseSetcba 30121  IndMetcims 30126  CBanccbn 30397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-cbn 30398
This theorem is referenced by:  bnrel  30402  bnsscmcl  30403  ubthlem1  30405  ubthlem2  30406  ubthlem3  30407  minvecolem1  30409  hlnv  30426
  Copyright terms: Public domain W3C validator